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A B S T R A C T

Understanding the diurnal dynamics of surface urban heat islands (SUHIs) is an indispensable step towards their
full interpretation at multiple time scales. However, because of the tradeoff between the spatial and temporal
resolutions of satellite-derived land surface temperature (LST) data, the climatology, variety, and taxonomy of
diurnal SUHI (DSUHI) patterns remain largely unknown for numerous cities with different bioclimates. By
combining daily MODIS LST data with a newly developed four-parameter diurnal temperature cycle (DTC)
model, we selected 354 Chinese megacities located in different bioclimatic zones to examine the characteristics
of the DSUHI descriptors and systematically investigate the prevalent DSUHI temporal patterns.

The DSUHI variations demonstrate that both the daily maximum and minimum SUHI intensity (SUHII) can
occur during most periods of the day, although these intensities are more likely to occur in the early morning and
noon/afternoon. Our results also reveal that both strong SUHIs (SUHII > 3 K) and surface urban cool islands
(SUCIs) (SUHII < 0 K) are more prevalent than those identified directly through the four MODIS transits.
According to the SUHI dynamics, five typical DSUHI temporal patterns are identified: standard-spoon, weak-
spoon, quasi-spoon, inverse-spoon, and straight-line patterns. A gradient was found with spoon-like patterns
(DSUHI dynamics typically with a daytime valley and a roughly constant trend or a small peak at night) in North
China and inverse-spoon (DSUHI dynamics with a typical daytime peak and a constant trend at night) or
straight-line patterns (DSUHI dynamics virtually unchanged all day) in South China. The DSUHI shapes were
found to be greatly controlled by the urban-rural contrast in the normalized difference vegetation index (NDVI)
and urban geometry. Our results not only advance our understanding of the diurnal climatology of SUHIs but
also provide a basis for urban surface heat mitigation by identifying the possible timing of the mitigation re-
quirement.

1. Introduction

The rapid urbanization of the past few decades has continuously

converted natural habitats into urban surfaces and it has also had a
large impact on the urban climate, environment and ecology (Kalnay
and Cai, 2003). One of the most distinctive urbanization-induced
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outcomes is the urban heat island (UHI), a phenomenon in which urban
temperatures tend to be higher than that of the surrounding area (Oke,
1982). The UHI has been reported in numerous cities worldwide
(Stewart and Oke, 2012) and it profoundly affects people's lives (Akbari
and Konopacki, 2005; Gong et al., 2012; Patz et al., 2005). Typically,
the UHI denotes the elevated urban temperatures measured in the ca-
nopy layer and/or at the skin-surface. They are referred to as the ca-
nopy layer UHI (CUHI) and the surface UHI (SUHI), respectively, both
of which have been documented extensively (Clinton and Gong, 2013;
Flores et al., 2016; Hu and Brunsell, 2015; Nichol, 2005; Oke, 1982;
Pichierri et al., 2012; Stewart and Oke, 2012; Wang et al., 2017).

The CUHI and SUHI have dissimilar temporal patterns on different
time scales, and the exploration of these different patterns has been a
major focus of previous UHI studies (Anniballe et al., 2014; Lazzarini
et al., 2013; Wang et al., 2017). CUHI dynamics from very small (e.g.,
hourly) to very large (e.g., inter-annual) time scales can be observed
directly through high-frequency in-situ surface air temperature (SAT)
measurements (Chow and Roth, 2006; de Faria Peres et al., 2018; Ren
et al., 2007; Runnalls and Oke, 2000). Similarly, high-frequency in-situ
ground surface temperatures (GSTs) can be used to characterize the
multi-temporal development of the SUHI (Wang et al., 2017). Never-
theless, GSTs obtained from stations, when compared with in-situ SATs,
are highly sensitive to the local surface type and are therefore char-
acterized by a high spatial heterogeneity, making such point-based
GSTs far less capable of representing the overall thermal differences
between urban and nonurban areas. Satellite-derived land surface
temperatures (LSTs) overcome this shortcoming by providing spatially
continuous data of the surface thermal status at a large scale (Voogt and
Oke, 2003; Weng, 2009), and such data have been widely used in SUHI
investigations under clear-sky conditions (e.g., Li et al., 2012; Imhoff
et al., 2010; Keramitsoglou et al., 2011; Meng et al., 2018; Quan et al.,
2014; Schwarz et al., 2011; Shen et al., 2016; Stathopoulou and
Cartalis, 2009; Zhou et al., 2014).

Consequently, investigations of SUHI temporal variations on sea-
sonal/monthly and inner-annual timescales have benefited greatly from
the accumulation of thermal remote sensing data, particularly those
from polar-orbiting satellites with relatively fine spatial resolutions
(i.e., Landsat/TM, ETM+, and TIRS, NOAA/AVHRR, Terra & Aqua/
MODIS, along with others) (Bechtel, 2015; Clinton and Gong, 2013;
Streutker, 2003; Tran et al., 2006; Zhou B. et al., 2013). Polar-orbiting
satellites, however, only sample LSTs at a comparatively low frequency
(only two to four times per day at most) primarily because of the trade-
off between the spatial and temporal resolution of satellite observations
(Sobrino et al., 2012; Zhan et al., 2013). This temporal discontinuity in
the LST records from polar orbiting satellites limits SUHI studies to
discrete times during a diurnal cycle when the satellite transits (Clinton
and Gong, 2013; Nichol and To, 2012; Peng et al., 2012; Shastri et al.,
2017), while the true and continuous SUHI temporal pattern during a
diurnal cycle (hereafter termed the DSUHI temporal pattern) has been
less investigated.

To better understand true DSUHI temporal patterns, two strategies
have been devised. The first uses spatially downscaled high-frequency
LSTs obtained from geostationary satellites (e.g., the GOES satellite
operated by the National Oceanic and Atmospheric Administration, the
FY satellite by the China Meteorological Administration and the MSG
satellite by the European Organization for the Exploitation of
Meteorological Satellites). This approach is termed the spatial down-
scaling strategy. It can generate hourly or sub-hourly LST data with a
spatial resolution of 1 km or finer, which are suitable for DSUHI in-
vestigations (Bechtel et al., 2012; Sismanidis et al., 2015a, b; Zakšek
and Oštir, 2012; Zhou J. et al., 2013). The other strategy combines LST
observations from polar-orbiting satellites and the diurnal temperature
cycle (DTC) models (hereafter termed the DTC modeling strategy) to
reconstruct temporally continuous LST dynamics, from which DSUHI
temporal patterns can be explored (Fang et al., 2017).

Using these two strategies, DSUHI temporal patterns have been

investigated in a very limited number of case cities, and they appear to
exhibit a greater variety than diurnal CUHI (DCUHI) patterns.
Specifically, the DCUHI usually exhibits a higher intensity at nighttime
compared to daytime (Oke, 1982), while the DSUHI exhibits no general
patterns but rather varies among different cities/seasons. For example,
on typical days in spring, autumn, and winter in Beijing, as well as for
summer in Athens, studies have reported that DSUHI and DCUHI pat-
terns are similar (Sismanidis et al., 2015b; Zhou et al., 2013a). The
CUHI and SUHI intensities (CUHIIs and SUHIIs) in these two cities
generally decrease after sunrise, reach a minimum around solar noon,
and then increase until the evening, after which stable and significant
nighttime SUHIIs (CUHIIs) persist until the following sunrise. The
summer seasons of some other cities (Rome, Beijing, and most of the
cities in China within the Yangtze River Delta urban agglomeration)
exhibit a different DSUHI temporal pattern: The SUHIIs after sunrise
increase quickly, generally reach a peak within 2 h after the solar noon,
and then decrease until sunset and remain relatively constant
throughout the night (Fang et al., 2017; Sismanidis et al., 2015b; Zhou
et al., 2013a). Yet another DSUHI temporal pattern was found for ty-
pical summer days in Paris and Istanbul: The SUHIIs first exhibit a four-
hour downward trend after sunrise; they then increase to a diurnal
maximum mostly in the afternoon, followed by a slow downward trend
until sunset, and a quasi-stationary trend until the next sunrise
(Sismanidis et al., 2015b; Zakšek and Oštir, 2012).

DSUHI temporal patterns have been recognized preliminarily using
the spatial downscaling and DTC modeling strategies as summarized
above; however, we have identified two issues requiring further in-
vestigation. First, previously acknowledged DSUHI temporal patterns
were mostly obtained on a single or few days across a yearly cycle, and
thus the climatological DSUHI temporal patterns remain largely un-
known. Second, previous reports of DSUHI temporal patterns focused
on a single or few cities located in a small number of bioclimatic zones;
such case studies are unable to provide a full insight into the DSUHI
temporal patterns that exhibit great variations among different cities.
Therefore, our current understanding of the variety and taxonomy of
the prevalent DSUHI temporal patterns for numerous cities with very
different bioclimates on a large (e.g., continental) scale remains pre-
liminary.

To address these limitations and derive a full understanding of the
true diurnal dynamics of the large-scale climatological SUHI, in the
present study we selected> 300 cities within different bioclimatic
zones across China. By incorporating a newly developed four-parameter
DTC model, the DTC modeling strategy was used for deriving the tem-
porally continuous DSUHI dynamics. We choose DTC modeling over the
spatial downscaling strategy because of the advantages of the former
strategy in terms of its data and the convenience in its methodology
(further explanations are given in Section 3.2). The characteristic de-
scriptors and the prevalent patterns of the DSUHI were investigated
over the full annual cycle of months/seasons from the climatological
perspective. This study provides a simple yet efficient methodology for
studying DSUHI temporal patterns. The identified DSUHI temporal
patterns deliver, to the best of our knowledge, a first insight into the
taxonomy of the SUHI diurnal dynamics, as well as how DSUHI tem-
poral patterns may vary among different bioclimatic zones. These
provide for an improved interpretation of the SUHI on multiple spa-
tiotemporal scales.

2. Study area

The past three to four decades have witnessed a very rapid urba-
nization of cities in China, wherein significant UHIs have been reported
(Wang et al., 2015; Zhou et al., 2014). In this study, we chose 354
megacities with urban areas exceeding 10 km2 (the delineation of urban
areas is given in Section 3.2.3) as the study area (Fig. 1). These cities
are mostly distributed in seven bioclimatic zones according to Zheng
et al. (2010): Southern Subtropical (SS), Mid Subtropical (MS),
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Northern Subtropical (NS), Warm Temperate (WT), Mid Temperate
(MT), Plateau Temperate (PT), and Arid Temperate (AT), from south-
east to northwest. For these climate zones, temperature and precipita-
tion generally decrease from south to north. Note that there exists an
extra Cold Temperate (CT) zone in northernmost China, but the Cold
Temperate zone was not considered in this study because it contains
only a single city.

For further analysis, we paid closer attention to eastern cities (245
cities in total with longitudes> 110° E; see the diamond-shaped area in
Fig. 1), which are in areas of low terrain with elevations generally lower
than 500m, to analyze the latitudinal variation of the DSUHI by con-
trolling the effects from city topography. The associated results are
provided in the Supplementary Information. We further selected nine
megacities (Fig. 1) for comparison of the satellite-derived DSUHI with
DCUHI patterns. These megacities, from north to south, include Harbin,
Urumqi, Beijing, Xi'an, Shanghai, Wuhan, Chengdu, Kunming, and
Guangzhou, with the associated results also given in Supplementary
Information.

3. Data and methods

3.1. Data

3.1.1. MODIS products
The land cover, LST, and normalized difference vegetation index

(NDVI) products provided by MODIS were used in this study. The land
cover data were derived from the annual MCD12Q1 product (collection
5, the spatial resolution is 500m) acquired by the Terra and Aqua sa-
tellites in 2012. In total, 17 land cover types were identified under the
International Geosphere-Biosphere Program (IGBP) classification
scheme. The LST data were obtained from the MOD11A1 and
MYD11A1 products (collection 6, acquired by the Terra and Aqua sa-
tellites, respectively), with a spatial resolution of 1 km. All the LST
images acquired from 2012 to 2016 were used. They include 160,776
tiles of LST images in total (4 transits/day× 22 tiles over

China×1827 day). The generalized split-window LST algorithm is
used for the generation of MODIS LSTs (Wan and Dozier, 1996) and the
associated retrieval errors are< 1.0 K in most cases (Wan, 2008). To
suppress impacts from abnormal retrieved LST values, pixels with LST
values> 12.0 K larger/smaller than their neighbors in the same row
were excluded (Gawuc and Struzewska, 2016; Lai et al., 2018). To
obtain a climatic representation of SUHIs, the daily LST products were
further aggregated into monthly and seasonal composites, during which
only clear-sky data were used. The NDVI data were derived from the
monthly MOD13A3 and the MYD13A3 products (collection 6, acquired
by the Terra and Aqua satellites, respectively) from 2012 to 2016, with
a spatial resolution of 1 km. In total they include 2640 tiles of NDVI
images (2 transits/month× 22 tiles× 12months/year× 5 years).

3.1.2. FY geostationary satellite data
Geostationary LST data from the Visible Infrared Spin Scan

Radiometer (VISSR) onboard the FY-2F satellite were used to provide
DSUHI temporal patterns for comparison with those derived from
MODIS data. The FY-2F LST data were retrieved using a split-window
algorithm (Tang et al., 2008), and there is no quality flag available. This
study employed all of the hourly FY-2F LST data (with a spatial re-
solution of 5 km) in 2016. A seasonal composition procedure was
conducted based on all the clear-sky data with the purposes of reducing
the impacts from data gaps caused by cloud contamination and deriving
DSUHI temporal patterns from a climatological perspective.

3.1.3. In-situ SATs and GSTs
To conduct a comparison between the LST-based DSUHI, GST-based

DSUHI and SAT-based DCUHI, we used the hourly SAT and GST data
obtained from ground-based weather stations in the nine selected
megacities (refer to Fig. 1 for their locations and Supplementary in-
formation for the results). The stations were flagged as urban or rural
sites according to their latitudes and longitudes available in the dataset,
as well as by the delineation of urban areas and rural backgrounds as
defined in Section 3.2.3. The numbers of urban and rural stations for

Fig. 1. Geolocation of the selected 354 cities and climate zones across China. The climate zones are Southern Subtropical (SS), Mid Subtropical (MS), Northern
Subtropical (NS), Warm Temperate (WT), Mid Temperate (MT), Plateau Temperate (PT), Arid Temperate (AT), and Cold Temperate (CT). The nine selected
megacities are Harbin (HRB), Urumqi (UQ), Beijing (BJ), Xi'an (XA), Shanghai (SH), Wuhan (WH), Chengdu (CD), Kunming (KM), and Guangzhou (GZ).
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these nine megacities are listed in Table 1. The SATs and GSTs were
obtained from automatic weather station (AWS) systems fixed at 1.5m
above ground and at the ground surface. Two types of AWS system were
used, including Vaisala MAWS301 and CAWS600, and the corre-
sponding data accuracy is± 0.3 °C at 20 °C (Wang et al., 2017).

3.2. Methodology

As explained in Section 1, it is difficult to directly derive the true
DSUHI temporal patterns through satellite-derived LST products. Stra-
tegies that can enhance the spatiotemporal resolution of LST data are
therefore needed. This study used the DTC modeling strategy mainly for
its advantages in the following two aspects. First, polar-orbiting sa-
tellite sensors (e.g., MODIS) are able to provide mature and globally
consistent LST products. Moreover, the SUHIs derived from MODIS data
are anticipated to suffer less from surface thermal anisotropy once a
temporal composition is created by averaging all valid LSTs obtained
from multiple viewing angles. Second, the DTC modeling strategy is easy
to implement so that the computational complexity is greatly de-
creased, especially when applied over a large number of cities. The
advantages in terms of satellite data and convenience in terms of al-
gorithm implementation make the DTC modeling strategy applicable to
hundreds of cities across extensive surfaces. We nevertheless acknowl-
edge that limitations also exist with the DTC modeling approach; a
discussion of these limitations is provided in Section 4.4.1.

3.2.1. Adjusted GOT09 (termed GOT09_A) model with four controlling
parameters

DTC models are essential for acquiring true DSUHI temporal pat-
terns with temporally sporadic LSTs during a diurnal cycle. Most of the
previous DTC models have 5–6 parameters, which exceed the four daily
transits of the bi-polar-orbiting satellites (e.g., MODIS and AVHRR),
and therefore, they cannot be used to simulate diurnal LST dynamics
based on these satellite data (Huang et al., 2014). Instead, DTC models
with only four controlling parameters (hereafter termed four-parameter
DTC models) are required. Several parameterization schemes have been
proposed to reduce the number of parameters of the present DTC
models to four. Hong et al. (2018) recently compared ten four-para-
meter DTC models derived from different parameterization schemes
and most of the frequently used DTC models. A comprehensive as-
sessment revealed that the GOT09_A model, which was modified from
the GOT09 model developed by Göttsche and Olesen (2009), had the
highest accuracy among the ten four-parameter DTC models, mainly in
three respects. First, the root-mean-square error of the GOT09_A model
is approximately 1.2 K, which is the lowest among the investigated
four-parameter DTC models. Second, the variability of its accuracy is
the lowest over different surface types, indicating the least amount of
fluctuations produced by differences in surface thermal status. Third,
compared with other four-parameter DTC models, this model exhibits
the most stable performance over different daily periods, especially for
the period shortly after sunrise; and the prediction accuracy of this
period can greatly determine the daily mean accuracy.

We employed the GOT09_A model to simulate the LST diurnal dy-
namics for its clarified highest performance among the existing four-
parameter DTC models. The general formula of its original six-para-
meter DTC model, i.e., the GOT09 model, is written as follows
(Göttsche and Olesen, 2009):
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where T(t) is the modeled LST at time t; T0, Ta, tm, ts, δT and τ are the six
controlling parameters, where T0 represents the residual temperature,
which is close to the sunrise temperature, Ta represents the daily tem-
perature amplitude (i.e., the difference between the diurnally max-
imum and minimum temperatures), tm and ts represent the times when
LST reaches its maxima and when LST attenuation begins (i.e., the start
time of the exponential part of the DTC function), respectively, δT is the
day-to-day temperature difference calculated as T0− T(t) when t ap-
proaches ∞, and τ is the total optical thickness (TOT); θ is the thermal
hour angle relative to the thermal noon at time tm (Göttsche and Olesen,
2009); θz is the solar zenith angle corresponding to θ; θz,min is the
minimum zenith angle at time tm; θs and θzs correspond to θ and θz at
time ts; m(θz), mmin, and m(θzs) are the relative air masses at θz, θz,min,
and θzs, respectively; k is the attenuation constant of the LST. All these
parameters, apart from the six controlling parameters, can be calculated
according to the local latitude, longitude, and day of year (Göttsche and
Olesen, 2009).

Two parameter reduction strategies were employed to reduce the six
parameters of the GOT09 model to four parameters, therefore for-
mulating an adjusted model called GOT09_A. The first strategy is to fix
δT to zero, which is plausible because δT usually fluctuates around zero
(Schädlich et al., 2001). The second strategy is to fix the TOT (τ) to a
constant value of 0.01, which has been determined to be generally the
best option for all types of surfaces in different climate zones (Hong
et al., 2018). These two parameter reduction strategies are even more
reasonable for the present study because the monthly/seasonal com-
posites of the daily LSTs were used for each transit time. For example,
the day-to-day temperature difference (δT) would be statistically equal
to zero as synoptic conditions can be suppressed for monthly compo-
sites of LSTs. The ultimate formula for GOT09_A can be written as
follows, as shown by Hong et al. (2018):
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where only four controlling parameters (T0, Ta, tm, and ts) exist.

3.2.2. Derivation of DSUHI temporal patterns using MODIS data
3.2.2.1. Delineation of urban and rural areas. The delineation of urban
and rural areas was based on the MODIS land cover product MCD12Q1
(see Section 3.1.1). The pixels classified as snow and ice were first
excluded due to their extremely low temperatures. The pixels classified
as water and permanent wetlands were also removed to eliminate the
impacts of water bodies. Forests were also excluded because they are
primarily distributed on undulating mountains and may consequently
be inappropriate to be used as rural backgrounds − the LSTs over
mountain forests are considerably lower than those over urban and
suburban areas. Within each city, the pixels with elevations
exceeding± 50m of the median elevation of the built-up pixels were

Table 1
Numbers of weather stations for the nine selected megacities.

City name Climate zone Urban site num. Rural site num.

Harbin Mid Temperate 7 83
Urumqi Mid Temperate 5 39
Beijing Warm Temperate 65 211
Xi'an Warm Temperate 20 82
Shanghai Northern Subtropical 20 41
Wuhan Northern Subtropical 17 71
Chengdu Mid Subtropical 35 161
Kunming Mid Subtropical 20 110
Guangzhou Southern Subtropical 46 94
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also removed based on the Global 30 Arc-Second Elevation (GTOPO30)
data, to suppress the impacts from elevation on temperatures. The
median rather than the mean elevation was used here to eliminate
fragmentary built-up pixels with extremely high or low elevations.
Among the remaining pixels within the administrative border of each
city (the administrative borders were obtained from the National
Geomatics Center of China), those classified as built-up were flagged
as urban areas, while the remaining pixels were referred to as rural
areas (Schwarz et al., 2011; Zhou et al., 2010). Note that here we chose
the administrative borders rather than the buffer zone to delineate the
rural areas, mainly considering that: (1) it remains difficult to simply
adopt a buffer radius for all the cities with different sizes, especially
when there exists no common standard for the radius definition of rural
buffers; and (2) for Chinese cities, the rural areas within the
administrative boundaries typically correspond well to the associated
urban sizes. Finally, the delineated urban and rural images were
resampled to 1 km to bridge their scale difference with the LST/NDVI
products using the nearest neighbor strategy.

3.2.2.2. Calculation of DSUHI temporal patterns. We used SUHII, which
is a widely used indicator in SUHI studies (Voogt and Oke, 2003), to
quantify the magnitude of the SUHI effects. The SUHII is usually
calculated as the difference between the mean urban and rural LSTs
(Imhoff et al., 2010). To derive the DSUHI temporal patterns from the
original four daily MODIS observations, the diurnal LST dynamics need
to be simulated first using the aforementioned GOT09_A model. For
each urban and rural pixel, the four thermal observation inputs
required by the GOT09_A model were computed through monthly/
seasonal temporal aggregations of the corresponding daily MODIS
transits to obtain clear-sky climatological DSUHI temporal patterns,
rather than those on a single day, which are impacted by specific
synoptic and soil conditions. Thus, we were able to acquire four valid
thermal observations within a climatological diurnal cycle with
minimal influence from cloud cover: [t1, T(t1)], [t2, T(t2)], [t3, T(t3)],
and [t4, T(t4)], where t1, t2, t3, and t4 are the temporally averaged
acquisition times, and T(t1), T(t2), T(t3), and T(t4) are the associated
composites of LSTs. Based on these four thermal observation inputs, the
four controlling parameters of the GOT09_A model, including T0, Ta, tm,
and ts, were computed using the Levenberg-Marquardt curve fitting
algorithm provided by Matlab 2015a for each pixel. The temporally
continuous SUHIIs were finally estimated by the following formula:

= −I t T t T t( ) ( ) ( )urban rural (3)

where I(t) is the SUHII at time t within a climatological diurnal cycle,
and Turban(t) and Trural(t) are the mean temperatures for all urban and
rural pixels at time t, respectively.

3.2.2.3. Descriptors used to represent DSUHI temporal
patterns. Descriptors that characterize the major diurnal features are
needed to represent and then differentiate DSUHI temporal patterns.
We chose six descriptors to quantitatively characterize the DSUHI
variations: (1) the daily maximum SUHII (termed Imax), (2) the time
when the maximum SUHII occurs (termed tmax), (3) the duration of
strong SUHI (SUHII > 3 K) within a daily cycle, (4) the daily minimum
SUHII (termed Imin), (5) the time when the minimum SUHII appears
(termed tmin), and (6) the duration of the surface urban cold island
(SUCI) within a daily cycle. A strong SUHI in this study is referred to as
the status when the SUHII exceeds 3.0 K because most global megacities
have an annual SUHII less than this intensity (Peng et al., 2012); and
the SUCI is defined as the occurrence of a negative SUHII (i.e., the
SUHII is less than zero). Note that it is impossible to calculate these six
descriptors directly based on the four daily MODIS LST acquisitions
without the diurnal modeling process.

3.2.2.4. Identification of typical DSUHI temporal patterns. Considering
that SUHI variations were largely impacted by bioclimatic conditions

(Zhao et al., 2014), we further investigated the variations of DSUHI
temporal patterns depending on bioclimatic zones. To achieve the
identification and taxonomy of the prevalent DSUHI temporal patterns,
the derived temporally continuous DSUHI variations were firstly
averaged among all the cities within each bioclimatic zone. The
DSUHI variations were then classified into typical patterns mostly
according to the following criteria: (1) the diurnal variations of the
change rate of the DSUHI intensity (ΔI/Δt), (2) the appearance time of
the Imax and Imin, and (3) the appearance of the SUCI. By these criteria,
five typical patterns were finally identified. Note that more
explanations on the classification criteria, as well as the associated
characteristics and the possible mechanisms of these typical patterns
will be provided in Section 4.2.

3.2.3. Analysis of the impact of NDVI on DSUHI temporal patterns
Previous reports have illustrated that the urban-rural contrast in

NDVI (termed ΔNDVI) can explain a great portion of the daytime SUHII
(Weng et al., 2011; Yuan and Bauer, 2007) and that the NDVI is closely
related to the diurnal LST dynamics (Duan et al., 2014; Jin and
Dickinson, 1999). We, therefore, speculated that vegetation status
could be one of the dominant controls of DSUHI temporal patterns. To
test this hypothesis, we used the Beijing metropolis as an example to
illustrate the ΔNDVI controls on the DSUHI temporal patterns. To ela-
borately investigate the possible variations in the DSUHI temporal
patterns under different ΔNDVI values, we calculated the DSUHI tem-
poral patterns based on selected urban and rural pixels with specific
categories of NDVI values rather than based on the entire set of urban
and rural pixels. In particular, the urban pixels were divided into five
categories with NDVI values of 0.0–0.2, 0.2–0.4, 0.4–0.6, 0.6–0.8, and
0.8–1.0. The rural pixels were divided into four categories with NDVI
values of 0.2–0.4, 0.4–0.6, 0.6–0.8, and 0.8–1.0 (no rural pixels have
NDVI values< 0.2). The DSUHI temporal patterns were computed
based on different combinations of these five categories of urban pixels
and four categories of rural pixels, and the variability of the DSUHI
temporal patterns that were governed by different ΔNDVI values was
finally identified. The detailed results related to this issue are presented
in Section 4.3.

3.2.4. Derivation of the DSUHI temporal patterns using FY-2F LSTs
The derivation of the DSUHI temporal patterns using FY-2F and

MODIS data is similar. Three steps are involved: First, the hourly FY-2F
LSTs were seasonally aggregated into 24 climatological thermal ob-
servations, i.e., [t1, T1], [t2, T2], …, [t24, T24], where t1 to t24 denote the
acquisition time and T1 to T24 denote the composited LST value at the
corresponding time. Second, the 24 LSTs were employed as the input
data for the DTC model to fit the four controlling parameters. Finally,
the hourly DSUHI intensity (DSUHII) was estimated using Eq. (3). A
DTC model was used in this study to decrease the uncertainty of the FY-
2F LST product, which can sometimes be substantial because no quality
control was conducted for this product and abnormal LST values oc-
casionally occur even after a seasonal composition process.

3.2.5. Derivation of the hourly variations of CUHII and SUHII with in-situ
SATs and GSTs

The SAT-based DCUHI and GST-based DSUHI variations were
computed using the hourly in-situ SAT and GST data with the following
formula:

= −I t T t T t( ) _ ( ) _ ( )site site urban site rural (4)

where Isite(t) is the hourly UHI intensity calculated by the in-situ SATs
or GSTs; and Tsite_urban(t) and Tsite_rural(t) are the mean in-situ tem-
peratures for all the urban and rural stations at the corresponding time
t, respectively.
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4. Results and discussion

4.1. Spatiotemporal variations of DSUHI descriptors

4.1.1. Daily maximum SUHII
The daily maximum SUHIIs (Imax) for the four seasons and the

corresponding occurrence times (tmax) across all cities are displayed in
Fig. 2. Note that tmax herein is defined as the number of hours after
sunrise rather than as the absolute local solar time; this is because the
sunrise time, which differs for cities at different latitudes or in different
seasons, directly determines the LST dynamics and therefore the DSUHI
temporal patterns. The results show that Imax has no fixed occurrence
time. It occurs in totally different periods within a diurnal cycle in
different seasons/cities, although it may occur more often in certain
periods.

In general, tmax occurs most frequently in noon/afternoon and early
morning (Figs. 2 and 3). For> 35% (60%) of the cities in winter
(spring, summer and autumn), tmax is at noon or in the afternoon (5 to
13 h after sunrise); and for the early morning (within 2 h after sunrise),
the proportion is> 20% in spring and autumn,> 40% in the winter,
and 9% in summer. Fewer cities (< 10% in each season) have tmax in
the early evening (13 to 17 h after sunrise). By comparison, tmax rarely
occurs in the morning (2 to 5 h after sunrise) and especially in the

evening (17 h after sunrise). In each season, no>5% of the cities have
tmax in the morning, and the corresponding percentages are< 2% for
the evening. This accords with the usually more significant SUHIIs
observed during the daytime (Tran et al., 2006; Peng et al., 2012).

The frequency distributions of tmax (see Fig. 3) indicate that, among
the four daily MODIS overpasses, the Aqua-day transit has the greatest
probability of capturing Imax, while the Aqua-night transit has the
lowest probability. Moreover, for 67% (in the spring), 71% (summer),
58% (autumn), and 71% (winter) of the cities, none of the four transits
is capable of capturing Imax, which will typically result in an under-
estimation of Imax if directly calculated from MODIS LST data. Note that
uncertainties may occur for these two DSUHI descriptors related to the
daily maximum SUHII (tmax in particular) using the DTC approach,
especially for the cities where Imax is near sunrise. A detailed discussion
of this issue is given in Section 4.4.1.

Based on the DTC approach, mean values (± standard deviations)
of Imax for all those cities are 1.4 (± 0.9), 2.0 (± 1.1), 1.2 (± 0.7), and
1.2 (± 1.0) K for spring, summer, autumn and winter, respectively.
These small seasonal variations in Imax, when compared with the var-
iations obtained in some individual cities such as Berlin and Paris
(Bechtel and Sismanidis, 2018), may be attributable to the averaging
processes along the temporal scale (seasonal mean rather daily) as well
as among cities within different bioclimatic zones. Despite the small

Fig. 2. Maximum SUHIIs (Imax) and the corresponding associated occurrence time (tmax) for all the cities. The dot color indicates the period within which tmax occurs
while the size represents the Imax value. Spring, summer, autumn and winter are defined as: March–May, June–August, September–November and
December–February, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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seasonal changes and relatively low seasonal mean values (i.e., mostly
lower than 3.0 K) demonstrated for the Imax, we further clarify that
strong SUHIs (SUHII > 3 K) are often observed (Fig. 4), and both the
occurrences and the durations of the strong SUHI exhibit large
monthly/seasonal variations.

On average, 10% of the cities across China exhibit a strong SUHI,
while if documented using only the four transits, strong SUHIs are only
observed in 6% of the cities. In the extreme seasons (summer and
winter) strong SUHIs occur more often than in the transitional seasons
(spring and autumn). Considerably higher proportions were found in
certain climate zones: for example,> 50% of the cities within the Arid
Temperate zone exhibit strong SUHIs from November to January.
Among all the cities with a strong SUHI in at least one month, the
duration was 5.6 (± 4.0) hours on average (± standard deviation).
Further, compared with the occurrences of the strong SUHI, its duration
exhibits larger monthly/regional variations. Typically, in winter,
durations for the northern cities are longer compared to those for the
southern cities, with strong SUHI usually exceeding 10 h. Such long
durations probably result from the extensive anthropogenic heating flux
during the cold months, which maintain high SUHIIs throughout the
nighttime. In the two transitional seasons, which are warmer, a similar
phenomenon is observed, but the north-south contrast is slightly
weaker. By contrast, in summer, the longest durations of the strong
SUHI appear mainly in southern China; this is presumably related to the
enhanced urban-rural contrasts in NDVI that amplify the cooling effect
of vegetation for southern cities during this season.

4.1.2. Daily minimum SUHII
The daily minimum SUHIIs (Imin) and the associated occurrence

times (tmin) over all the cities are shown in Fig. 5. tmin is most likely to
occur in the early morning (within 2 h after sunrise) and in the noon/
afternoon (i.e., 5 to 13 h after sunrise). More precisely, 50%, 70%, 55%,
and 30% of the cities have an early-morning Imin during spring,
summer, autumn, and winter, respectively; and the corresponding
proportions reach 10–40% per season for the noon/afternoon hours.
Further, it also often occurs in the morning with 5% to 30% of the cities
recording a tmin at that time. By comparison, during nighttime (i.e., 13
to 24 h after sunrise), tmin is found frequently only in spring and
summer while it is almost absent in the autumn and especially winter,
which is probably because of the more pronounced nocturnal SUHI in

these two seasons (more explanations are provided in Section 4.2).
We note that the frequency distributions of tmin occasionally overlap

with those of tmax (e.g., in the early morning and noon/afternoon) and
that both rarely occur around the overpass time of the Aqua-night
transits (Fig. 6). In contrast to Imax, the other three MODIS daily transits
can all potentially capture Imin in a specific season. Nevertheless, >
45% of the cities exhibit a tmin that matches none of the four transits. In
other words, Imin is also likely to be distorted (i.e., overestimated) di-
rectly from the four observations, and the occurrences of the SUCI are
likely underestimated. Moreover, the seasonal mean Imin values for all
cities are negative across the yearly cycle (−0.3, −0.2, −0.3 and
−0.5 K in spring, summer, autumn and winter, respectively).

The percentages of cities in which an SUCI occurs as well as the
monthly mean SUCI durations within an annual cycle are shown in
Fig. 7. On average, an SUCI occurs in> 50% of the cities (exceeding
70% in winter), which is much higher than the proportions of cities
where an SUCI is observed directly through the MODIS observations
(35% on monthly average). Thus, the proportions are also much greater
than in previous reports based on the original four transits, which found
only 8% (5%) of the cities globally had a daytime (nighttime) SUCI,
from an annual perspective (Peng et al., 2012).

From a zonal perspective, SUCIs appear more frequently in the
northern bioclimatic zones than in the southern ones, with the most
frequent occurrences observed for cities within the Arid Temperate and
Plateau Temperate zones. Specifically, all the cities in the Arid
Temperate zone exhibit SUCIs during most months, and mean Imin

across these cities is lower than −5.0 K for all four seasons. For the
Plateau Temperate zone, each month SUCIs arise in over 85% of cities.
In comparison, SUCI durations are more similar between cities. The
durations of SUCIs generally reach 7.6 (± 6.1) hours when monthly
averaged, and for 60–80% of the cities in which SUCIs emerge, it
lasts< 9 h. Nevertheless, SUCIs can occasionally persist for much
longer; e.g., in cities in the Arid Temperate and western Mid Temperate
zone, and in cities in southwestern China (i.e., the western Southern
Subtropical and Mid Subtropical zones) in spring and winter.

4.2. Identified typical DSUHI temporal patterns

Large geographic differences are evident in the daily maximum and
minimum SUHIIs, especially between southern and northern cities, and
the DSUHI variations were, therefore, clarified related to latitude (refer
to the Supplementary Information for more details). In particular, it is
the latitude-related local bioclimate (including radiation, temperature,
precipitation and type of rural background) that partly regulates these
DSUHI variations (Zhao et al., 2014). We therefore investigated the
DSUHI variations within seven different bioclimatic zones and identi-
fied five typical patterns: standard-spoon, weak-spoon, quasi-spoon, in-
verse-spoon, and straight-line patterns, (see Figs. 8 and 9). These five
patterns are differentiated primarily according to the daytime SUHII
dynamics because the nighttime SUHII variations are smaller than those
of the daytime dynamics, and the detailed criteria are provided in
Table 2. From the zonal perspective, the DSUHI temporal patterns ex-
hibit a general trend that changes from spoon-like patterns (including
standard-spoon, weak-spoon and quasi-spoon patterns) in the north to
inverse-spoon or straight-line patterns in the south (see Figs. S2 to S4
given in Supplementary information). Naturally, these patterns re-
present a continuum, and as in any classification, intermediate patterns
may exist. Moreover, the patterns considered here each represent the
average diurnal course of all cities within one bioclimatic zone, while
the variation between cities is large; thus, certain cities may exhibit
patterns that are different from the average pattern.

4.2.1. Standard-spoon pattern
The standard-spoon pattern is defined as the DSUHI temporal pat-

tern with a deep valley during the day and a gradually increasing but
relatively stable intensity at night. This pattern is only present in the

Fig. 3. Frequencies of the estimated tmax within a daily cycle plotted as a polar
diagram, with the angular and radial coordinates denoting tmax from sunrise
(unit: h) and the corresponding proportion, respectively. The overpass times of
the four MODIS daily transits relative to sunrise for all the cities are shown in
the colored rays. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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Arid Temperate zone for all four seasons (Fig. S2). It exhibits the
greatest rate of change in SUHII (i.e., ΔI/Δt) among the five patterns
(Fig. 9b): The SUHIIs decline rapidly after sunrise, reach minima
around noon (i.e., 4 to 8 h after sunrise), increase rapidly before sunset
and have a relatively slow rise throughout the night (Fig. 8a).

This pattern typically exhibits a daytime SUCI and an intense noc-
turnal SUHI all year-round, yet significant seasonal discrepancies exist
(Fig. S2). First, the summer has both the most intense SUCI (mean in-
tensity is−7.5 K for all cities in the Arid Temperate zone) as well as the
longest SUCI duration (around 12 h, i.e., from 2 to 14 h after sunrise).
Conversely, the winter SUCI has the lowest intensity and shortest
duration (around −3.0 K/6 h). Second, the nighttime SUHII is

comparatively higher during winter, spring and autumn (reaching
around 3.0 K before sunrise) than in summer (around 2.0 K).

The rapid decrease in daytime SUHII after sunrise and the formation
of a significant daytime SUCI are probably because of the pronounced
positive urban-rural contrast in vegetation status as well as the low
thermal inertia of the bare land in the Arid Temperate zone. This urban-
rural difference in terms of their different land-cover types has also
been demonstrated over cities within similar bioclimatic zones, e.g.,
cities with an arid climate (Lazzarini et al., 2013; Haashemi et al., 2016;
Mathew et al., 2018). The seasonal differences between the daytime
SUCIs may be attributable to contrasts in urban-rural vegetation due to
phenological contrasts. The switch from the SUCI back to the SUHI

Fig. 4. Monthly mean durations of strong SUHI (SUHII > 3.0 K) within a yearly cycle. The dots represent cities where strong SUHIs are observed in each month, and
the dot color indicates the corresponding duration. The percentages as well as the numbers above each subplot represent the proportions of cities with a strong SUHI
relative to the total number of the cities in that month and the averaged durations of the strong SUHIs among these cities. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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during the night may be due to the urban canyon effect and anthro-
pogenic heating, since they are the two major controls that preserve
more urban heat storage compared to the rural situation. The more
significant nocturnal SUHI during winter (near 4.0 K) is likely related to
the greater heat emissions from residential areas. Further discussion of
the controls of the DUSHI patterns is given in Sections 4.3 and 4.4.2.

4.2.2. Weak-spoon pattern
The weak-spoon pattern is defined as the DSUHI temporal pattern

with a general valley during the day and an approximately constant
SUHII during the night. This pattern is very common in the three
temperate climate zones: it appears in spring, summer, and autumn in
the cities in the Plateau Temperate zone, throughout the year in Mid
Temperate zone cities, and in spring, autumn and winter in Warm
Temperate zone cities (Fig. S3); while it only occurs in the winter in the
cities in a single subtropical zone (i.e., the Northern Subtropical zone)
(Fig. S4). For this pattern, the SUHII also declines after sunrise, reaches
a minimum at around noon, increases in the afternoon, and maintains a
sustained maximum during the night (Fig. 8b). The weak-spoon pattern
can be distinguished from the standard-spoon in the following aspects.
First, the ΔI/Δt of the weak-spoon pattern is much lower in daytime,
and even close to zero during the night (Fig. 9b); and second, the mean
daytime SUHIIs for all the cities remain positive, although SUCIs do
develop for some individual cities with the weak-spoon pattern (Fig. 8a

vs. b).
Previous studies have also documented the presence of the weak-

spoon pattern. For example, the summer SUHI for Athens (in the
Mediterranean climate zone) exhibited such a pattern, with its tmin

around 6 h after sunrise (Sismanidis et al., 2015b). The Beijing me-
tropolis (situated in the Warm Temperate zone), reported by Zhou et al.
(2013a) with both geostationary LSTs and MODIS products, also ex-
hibited this pattern on specific days in spring, autumn and winter. Note
that in autumn and winter, the associated DSUHI temporal patterns
reported in Beijing accord well with the regional mean DSUHI temporal
patterns for all the cities within the Warm Temperate zone. Never-
theless, there is still inconsistency in spring, when the quasi-spoon rather
than the weak-spoon pattern occurs in the Warm Temperate zone (fur-
ther clarification of the quasi-spoon pattern is given below). This in-
consistency indicates that the DSUHI temporal patterns of a certain city
may vary based on the overall regional mean patterns.

4.2.3. Quasi-spoon pattern
The quasi-spoon pattern is defined as the DSUHI temporal pattern

with a small valley shortly after sunrise, a small peak in the afternoon,
and a relatively steady intensity during the night. This pattern appears
in the summer of the cities within the Warm Temperate zone (Fig. S3),
and in the autumn within the Northern Subtropical zone (Fig. S4). For
this pattern, SUHIIs have a short-term (around 2 h) decrease after

Fig. 5. The minimum SUHIIs (Imin) and their occurrence time (tmin) for all cities. The dot size represents Imin and the color indicates the period within which tmin

occurs. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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sunrise, maintain an increasing trend from late morning until near/
before sunset, decrease slightly following nightfall, and then preserve a
constant and positive intensity during the night (Fig. 8c). The early
morning decrease in SUHIIs is probably due to the faster heating of
rural open land responding to the incipient solar insolation when
compared with that over urban areas, which can be delayed by the
shading effect of urban buildings when solar altitudes are low (Allen
et al., 2017; Oke et al., 2017). Subsequently, the urban shading effect
weakens as the solar altitudes gradually increase, so that the SUHIIs
increase until the more rapid urban cooling weakens them again. Note
that for this pattern tmax is often around sunset while tmin may be either
in the early morning or in the early evening; and the occurrence of
SUCIs is rare.

The quasi-spoon pattern was also illustrated for summer in Paris
(Zakšek and Oštir, 2012) and Istanbul (Sismanidis et al., 2015b).
Nevertheless, for these cities, it generally took longer (around 4 h) for
the SUHIIs to rebound following the small valley in the morning; and
this possibly indicates a larger shading effect of the tall buildings (i.e.,
the urban geometry may have a more dominant effect over the vege-
tation abundance for shaping the DSUHI temporal pattern in the
morning of these cities).

4.2.4. Inverse-spoon pattern
The inverse-spoon pattern is defined as the DSUHI temporal pattern

with a general peak during the day and a roughly constant intensity at
night. This diurnal pattern only appears for the cities in the subtropical
zones, including spring and summer of the Northern Subtropical zone,
spring, summer and autumn of both the Mid Subtropical and Southern
Subtropical zone (Fig. S4). This pattern differs from all others in that it
has a constantly positive SUHII change rate for the first half of the
daytime (Fig. 9b). The SUHII increases after sunrise, reaches a peak in
the early afternoon (8 to 10 h after sunrise), weakens in the afternoon
until the first half of the night, and rarely changes during the second
half of the night (Fig. 8d). The completely reverse regime of this pat-
tern, compared to the previous spoon-like patterns, probably results
from the higher vegetation abundance in the rural areas.

For this pattern, we further observed that the SUHII growth rate is
occasionally small and may become negative within a short period
(around 2 h) after sunrise. Such an early-morning decline was also

reported from ground-based measurements in Basel (Allen et al., 2017)
and Vancouver (Allen, 2017), where the summer DSUHIs exhibited a
similar inverse-spoon pattern. Like the short-term decrease for the quasi-
spoon pattern after sunrise, extensive shading induced by buildings is
also assumed to be the dominant factor causing the early-morning de-
cline. The inverse-spoon pattern was also observed from satellite-based
measurements during the summer season in Beijing (Zhou J. et al.,
2013) and Rome (Sismanidis et al., 2015b).

4.2.5. Straight-line pattern
The straight-line pattern, as its name implies, is defined as the

DSUHI temporal pattern with an approximately constant intensity
throughout the day. This pattern was observed mostly for cities within
the subtropical zones: it appears in the winter for cities within the Mid
Subtropical zone as well as those within the Southern Subtropical zone
(Fig. S4); while it is only shown for those cities within the Plateau
Temperate zone in winter (Fig. S3). This pattern is characterized by
very small variations during the diurnal cycle with the mean SUHII
always being around 0.5 K (Fig. 8e). To the best of our knowledge, no
instances of this pattern have been observed in previous DSUHI studies.

4.3. Analysis of the controls of DSUHI temporal patterns

The DSUHI temporal patterns are calculated as the difference be-
tween the urban and rural LSTs within diurnal cycles, as identified in
Section 4.2, and these patterns are regulated in theory by the four
controlling parameters of the GOT09_A model (i.e., T0, Ta, tm, and ts)
over both urban and rural surfaces (Hong et al., 2018). The daily mean
SUHIIs are speculated to be partly determined by the urban-rural con-
trast in the residual temperature T0 (i.e., ΔT0, wherein Δ represents the
urban-rural difference), but the DSUHI temporal patterns are less im-
pacted by ΔT0, which is the constant term in the four-parameter DTC
model and therefore controls only the magnitude rather than the shape
of the DSUHI. By comparison, the urban-rural difference in the daily
temperature amplitude (ΔTa) is anticipated to have a large impact on
the DSUHI temporal patterns because ΔTa determines the diurnal var-
iations in the magnitudes of the SUHIs (e.g., whether a spoon-/inverse-
spoon- or straight-line-like pattern is exhibited). Similarly, DSUHI
temporal patterns are expected to be influenced by the urban-rural
difference in the daily peak LST time (Δtm) and the time when the LST
begins to attenuate (Δts), which, in combination with ΔTa, collectively
regulates the tmax and tmin of the diurnal SUHII dynamics shown in
Figs. 2 and 5.

The analysis of the controls of DSUHI temporal patterns is therefore
related to those of the controls of ΔTa, Δtm, and Δts. Studies by Jin and
Dickinson (1999) and Duan et al. (2014) have illustrated that these
three parameters are closely related to the urban-rural contrast in ve-
getation status represented by NDVI. The urban-rural contrast in NDVI
(ΔNDVI) is also significantly related to the daytime SUHII (Li et al.,
2011; Wang et al., 2015; Weng et al., 2011; Yuan and Bauer, 2007). It is
therefore anticipated that it would govern DSUHI temporal patterns,
especially in the vegetation growing season. To test this hypothesis,
summer Beijing was chosen as an example to derive the possible var-
iations of the DSUHI temporal patterns governed by different ΔNDVI
(please refer to Section 3.2.4 for the methodology). The corresponding
results are displayed in Fig. 10.

The interpretation of the following analysis is presented based on
the sign of ΔNDVI.

(1) Urban NDVI is lower than rural NDVI (ΔNDVI < 0)

In this case, the DSUHI mostly exhibits an inverse-spoon pattern (see
Lines a1–a4, Lines b1–b3, Lines c1–c2 and Line d1 in Fig. 10). For these
lines, the daytime SUHIIs generally increase rapidly after a short-term
decrease after sunrise. The increase is a result of the faster urban
heating of impervious surfaces (e.g., buildings and streets) compared

Fig. 6. Frequencies of estimated tmin within a daily cycle plotted as a polar
diagram, with the angular and radial coordinates denoting tmin from sunrise
(unit: h) and the corresponding proportion, respectively. The overpass time of
the four MODIS daily transits relative to sunrise for all the cities is shown by the
colored rays. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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with rural heating, which is suppressed by the cooling effect of the
greater prevalence of vegetation (see also Figs. 8d and 9a). In the
afternoon, the rapid cooling of urban areas forces the SUHIIs to de-
crease, while later, the canyon effect as well as anthropogenic heat
inputs slow urban cooling and help maintain a moderate SUHII
throughout the night.

(2) Urban NDVI is approximately equal to rural NDVI (ΔNDVI≈ 0)

In this scenario, the DSUHI exhibits a straight-line pattern (see Lines
a5, b4, c3, and d2 in Fig. 10). The straight-line pattern suggests that the

overall urban and rural heating/cooling rates become generally similar
when the urban and rural NDVI values are roughly equal and high. This
result is expected because, in this case, evaporative cooling due to ve-
getation is generally equivalent over urban and rural areas. This result
also indicates that vegetation-induced cooling surpasses the impacts
from the other factors (e.g., urban geometry and anthropogenic heat
input) when urban and rural vegetation coverages are at the same level.

(3) Urban NDVI is greater than rural NDVI (ΔNDVI > 0)

For this situation, which often corresponds to cities in desert or arid

Fig. 7. Monthly mean durations of SUCIs (SUHII < 0.0 K) within a yearly cycle. The dots represent the cities where SUCIs are displayed for each month, and the dot
color indicates the associated duration. The percentages, as well as the numbers above each subplot, represent the proportions of cities displaying an SUCI relative to
the total number of the cities in that month and the averaged durations of the SUCIs among these cities. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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zones, the DSUHI exhibits a standard- or weak-spoon pattern (see Lines
b5, c4–c5 and d3–d5 in Fig. 10). For these lines, the daytime SUHII after
sunrise decreases and can become negative (occurrence of an SUCI) due
to the rapid heating of rural bare soils under significant solar insolation
when compared to more vegetated urban areas (Fig. 9a). The SUCI
weakens, and a SUHI returns at night, which is once again probably
attributable to the urban canyon effect.

By examining the DSUHI dynamics for a single city, the above
analysis clarifies that the DSUHI temporal patterns are mainly regulated
by the urban-rural contrast in vegetation status. Such controls were
further confirmed by the close relationship between ΔNDVI and the
durations of strong SUHIs and SUCIs in certain seasons (see Fig. S5).
Although the controls from NDVI on the DSUHI temporal patterns have
been explained reasonably well, we nevertheless note that no sig-
nificant relationships were found between the two DSUHI descriptors,
i.e., tmax and tmin, and ΔNDVI. This result may be partly attributable to

the high sensitivities of these two DSUHI descriptors to the quality of
LST inputs as well as to the accuracy of the four-parameter DTC models
(further explanation is given in Section 4.4.1). Further, the DSUHIs are
also controlled by factors other than NDVI, such as the urban geometry,
background climate, properties of the rural background, urban struc-
tures, and anthropogenic heat (additional discussion of the controls of
the DSUHIs is provided in Section 4.4.2) (Clinton and Gong, 2013;
Imhoff et al., 2010; Li et al., 2011; Liu et al., 2017; Oke, 1982; Peng
et al., 2012; Schwarz and Manceur, 2015; Zhou et al., 2017).

4.4. Discussion

With the assistance of the polar-orbiting satellite products and the
latest four-parameter DTC model that has the highest accuracy, this
study has identified five typical patterns for the DSUHI from a clear-sky
climatological perspective over more than three hundred cities. To our

Fig. 8. Five typical DSUHI temporal patterns and their associated diurnal urban/rural LST cycles in China. Note that for each pattern, the boxplot includes the
seasonal DSUHI variations of every city within the bioclimatic zones that was classified as possessing this pattern. The DSUHI temporal pattern was calculated as the
mean DSUHI values for all these cities, and the urban/rural LSTs are the associated mean urban/rural LSTs among these cities. The grey shading represents nighttime.

Fig. 9. Rates of change in (a) urban and rural LSTs and (b) SUHIIs plotted for the five identified DSUHI temporal patterns within a daily cycle. Note that for subplot b,
the left y-axis refers to the changing rate of the weak-spoon, quasi-spoon, inverse-spoon, and straight-line patterns, while the right y-axis refers to that of the standard-
spoon pattern.
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knowledge, this is the first study to incorporate cities with a wide
variety of urban morphology, rural background, and biophysical con-
ditions. By a comprehensive examination and comparison of the DSUHI
temporal patterns, our results contribute to the understanding of the
less well-studied SUHI temporal dynamics (i.e., the true diurnal dy-
namics). The derived DSUHI temporal patterns also allow for the
identification of the daily maximum and minimum SUHIs and the as-
sociated occurrence times even if there are no overpassing satellites.
These variations, when combined with in-situ meteorological observa-
tions (e.g., air temperature, wind, humidity, and radiation), may pro-
vide insight into the diurnal variation of large-scale physiological
equivalent temperatures (PETs), which directly relate to the thermal
comfort of humans. Moreover, the durations of the strong SUHIs and
SUCIs can be estimated so that the effect of urbanization on energy
consumption used in urban heating/cooling can be better characterized
(Akbari and Konopacki, 2005), and the times when UHI mitigation are
most needed can be identified.

Our results reveal that the DSUHI demonstrates a much greater
variety of patterns when compared with the DCUHI, as also evidenced
by the detailed comparison of the DSUHI and DCUHI patterns over the
nine megacities (see Fig. S6). GST measurements can as well be suitable

for the identification of DSUHI temporal patterns, but this type of
measurement suffers from its low density and lower degree of re-
presentativeness of true urban surfaces (refer to Supplementary
Information); thus, the use of such GSTs will probably distort DSUHI
interpretations. To resolve the issue of representativeness, Allen et al.
(2017) suggested the use of pyrgeometers since their hemispherical
FOV captures a much larger sample of surfaces than a typical infra-red
temperature radiometer. Nevertheless, the cost of the installation of
many pyrgeometers over extensive urban surfaces can be high, and the
process of correction for atmospheric effect may also induce un-
certainties. With LSTs from polar-orbiting satellites, the DTC modeling
strategy provides a simple yet effective way to conduct DSUHI ex-
aminations. Our evaluations also show that the DSUHI temporal pat-
terns over Beijing obtained using the DTC modeling and spatial down-
scaling strategies (Zhou J. et al., 2013) are similar. Though progress in
identifying and understanding the DSUHI temporal patterns has been
made, limitations remain, and clarification of the uncertainties and/or
prospects of this investigation are given below.

Table 2
Criteria for differentiating the five typical patterns.

Pattern Morning Noon Afternoon Evening

Standard-spoon ΔI/Δt < 0 and can exceed −1 K/h;
SUCI appears

ΔI/Δt transits from <0 to>0; Imin

appears; SUCI lasts
ΔI/Δt > 0 ΔI/Δt > 0 but is close to zero

Weak-spoon ΔI/Δt < 0 but never exceed −1 K/h ΔI/Δt transits from <0 to > 0; Imin

appears
ΔI/Δt > 0 ΔI/Δt is close to zero

Quasi-spoon ΔI/Δt transits from <0 to > 0 ΔI/Δt > 0 ΔI/Δt transits from >0 to < 0 ΔI/Δt transits from <0 to close-
to-zero

Inverse-spoon ΔI/Δt > 0 (occasionally < 0 shortly
after sunrise)

ΔI/Δt > 0 ΔI/Δt transits from >0 to < 0;
Imax appears

ΔI/Δt transits from <0 to close-
to-zero

Straight-line −0.3 < ΔI/Δt < 0.3 K/h, and no specific regime is present throughout the diurnal cycle

Fig. 10. Variations in DSUHI temporal patterns (lines a1-a5, b1-b5, c1-c5 and d1-d5) for summer in Beijing under different combinations of urban and rural pixels
classified by NDVI values. Each DSUHI temporal pattern is calculated as the difference between the mean LST of the urban and rural pixels with the corresponding
category of NDVI values.
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4.4.1. Uncertainties induced by satellite-derived LSTs and the four-
parameter DTC model

Although MODIS products such as LSTs have been widely con-
sidered to have a relatively high accuracy (Wan, 2008), the accuracies
of these products, especially those with slanted observation angles, may
become lower over heterogeneous urban surfaces due to significant
urban thermal anisotropy (Hu et al., 2016; Voogt, 2008). Studies have
indicated that the LST biases induced by this thermal anisotropy may
reach 5.0 K and may be even higher over city cores with tall buildings
(Lagouarde et al., 2010; Zhan et al., 2012). This uncertainty in the
MODIS LSTs will therefore likely distort the interpretations of DSUHI
temporal patterns. However, in this study, a temporal aggregation of
the MODIS LSTs at the monthly or seasonal scales was conducted prior
to the DTC modeling, and we also implemented a composition of the
LSTs under different viewing angles, which will greatly reduce the LST
biases due to thermal anisotropy. Consequently, the effects of such
distortions on our interpretations are likely minimal (Hu et al., 2016).
Another control that will likely change the DSUHI temporal pattern is
the antecedent weather conditions, especially any that yield precipita-
tion. Studies have illustrated that precipitation is able to greatly weaken
SUHI effects during the precipitation process while the SUHI effect is
strengthened afterwards (He, 2018). It is therefore anticipated that
preceding precipitation can likely bias the DSUHI descriptors (e.g., the
Imax, Imin, strong SUHI/SUCI duration). Nevertheless, we consider that
the impacts due to the preceding precipitation may be considerably
diminished when a large number of LST images are aggregated, and
despite the possible alterations to the DSUHI descriptors, the identified
typical DSUHI temporal patterns are likely robust.

Comprehensive comparisons have exemplified that the four-para-
meter DTC model used in this study (i.e., the GOT09_A) has the best
performance and stability among all available models (Hong et al.,
2018). In addition, with the temporally composited LSTs, the parameter
reduction schemes used by GOT09_A are more reasonable and the as-
sociated model accuracy is further guaranteed, as explained in Section
3.2.1. Nevertheless, four-parameter DTC models oversimplify the
diurnal LST dynamics, and model uncertainties exist in GOT09_A,
especially for the period shortly after sunrise, despite its considerably
better ability to depict LST dynamics compared to other four-parameter
DTC models (Hong et al., 2018). Such an over-simplification will likely
yield biases in the resultant DSUHI and therefore DSUHI descriptors
(e.g., tmax and tmin), which are sensitive to DSUHI fluctuations. Al-
though uncertainties may appear in some DSUHI descriptors, the ty-
pical DSUHI temporal patterns that were identified will probably re-
main credible. This credibility is also justified by Fig. A1 in the
Supplementary Information, which illustrates that the geostationary-
derived and MODIS LST-derived DSUHI temporal patterns are mostly
similar in several megacities, despite the considerable discrepancies in
the accuracies and spatial resolutions between these two different data
sources.

In addition, the DTC modeling strategy provides only smoothed
DSUHI temporal patterns from a climatological perspective. The real
DSUHI temporal pattern over a specific city and on a specific day may
vary depending on the property and synoptic conditions of the city
(further explanations are provided in Sections 4.4.2 and 4.4.3). The
spatial downscaling strategy based on high-frequency geostationary
LSTs, if its relative difficulty/complexity is ignored, can potentially help
derive the DSUHI temporal patterns with higher accuracy for specific
cities (Bechtel et al., 2012; Keramitsoglou et al., 2013; Sismanidis et al.,
2015a, b; Zakšek and Oštir, 2012; Zhou J. et al., 2013). Moreover, with
the recently launched Himawari-8 satellite and the new-generation
geostationary satellites in preparation, LST observations with a spatial
resolution of 2 km can be produced every 15min. These high-frequency
LSTs can be directly used for DSUHI investigations over megacities even
without spatial downscaling and DTC modeling procedures. However,
care is needed when interpreting DSUHI temporal patterns derived
from geostationary observations because these satellites always observe

cities from fixed directions, and the induced urban thermal anisotropy
may distort DSUHI interpretations (Hu et al., 2016). Geostationary
observations may be inappropriate for the study of SUHIs at high lati-
tudes and therefore for the investigation of DSUHI temporal patterns of
cities on a continental/global scale.

4.4.2. Clarifications on other controls of DSUHI temporal patterns
The typical DSUHI temporal patterns have been elucidated under

the dominant control of the urban-rural contrast in NDVI, where the
spoon-like, straight-line, and inverse-spoon patterns were demonstrated
to be governed by a positive, near-zero, and negative ΔNDVI, respec-
tively. Nevertheless, we clarify that DSUHI variations are actually in-
fluenced by a combination of impacts from various controls in addition
to vegetation cover. Urban geometry, for example, is the primary
control that accounts for the early-morning DSUHI decline through the
shading effect of the urban buildings that reduces ground-level solar
insolation and surface temperatures in the early morning in more
densely built neighbourhoods, especially during winters for cities at
higher latitudes (Allen et al., 2017); it can also help preserve nocturnal
heat storage and, as a result, strengthen the nighttime SUHI. Similarly,
controls such as urban structures, building materials, and distances to
water bodies can also influence SUHI effects (Schwarz and Manceur,
2015) and, as a result, lead to variations in the DSUHIs of certain cities
in reference to the typical patterns in their corresponding bioclimatic
zones. In addition, DSUHI temporal patterns remain sensitive to the
elevation/slope of some cities, although the topography impacts have
been partly suppressed by removing the pixels with extreme high/low
elevations (refer to Section 3.2.3).

Another factor that can exert impacts on DSUHI variations is the
rural background in terms of its land cover type and extent, which
determine the diurnal temperature dynamics of rural lands. The rural
extent is assumed to be capable of affecting, to some extent, the DSUHI
descriptors due to their close relationship with the SUHII, as clarified by
previous studies (Clinton and Gong, 2013). For example, the Imax may
be enlarged over large rural extents, and the durations of both strong
SUHI and SUCI effects may also be enlarged due to an intensified
diurnal SUHI variation. However, we consider that despite the possible
change in the DSUHI descriptors at different rural extents, the typical
patterns identified in this study will rarely change in most cases because
the rural thermal properties usually remain similar as rural extents
increase. The rural land cover type, by comparison, is speculated to
affect not only the simultaneously estimated SUHII (Imhoff et al., 2010)
but also the DSUHI temporal patterns. For instance, the DSUHI with
forests as the only rural land cover type is anticipated to demonstrate a
very different pattern from those with other land cover types as the
main rural lands (i.e., the patterns identified in this study). As indicated
in Section 3.2.3, forests in China strongly correspond to undulating
mountains, and their LST dynamics are therefore impacted more by
altitude and evaporative cooling compared to regular rural lands. With
forests as the only rural background, the considerably lower forest
surface temperatures resulting from the high altitude and intensive
evaporation can greatly increase daytime SUHIIs, therefore likely
transforming the ‘straight-line’ DSUHI temporal pattern to ‘inverse-
spoon’ patterns (Fang et al., 2017).

4.4.3. Clarification of clear-sky climatology vs. all-weather DSUHI
temporal patterns

The DUSHI patterns identified in this study only represent the sce-
nario under clear-sky conditions. Previous research has documented
that the SUHII, particularly during the daytime, would decrease under
cloudy conditions when compared with that observed under clear skies
(Allen et al., 2017). By considering both clear-sky and overcast condi-
tions, DSUHI temporal patterns are expected to change, and they may
become less typified than the five patterns shown in Section 4.2. For
example, the characteristic spoon-like DSUHI temporal pattern shown
for cities within the Arid Temperate zones will probably remain, but the
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daytime SUCI magnitude will probably decrease under all-weather
conditions. To acquire accurate all-weather DSUHI temporal patterns,
one may try to generate the LSTs under clouds with available satellite
LST products; e.g., using the algorithm proposed by Jin (2000). More-
over, though in-situ high-frequency GST measurements are unsuitable
for the study of DSUHI temporal patterns under clear-sky conditions,
due to their limited sampling areas (refer to Supplementary Informa-
tion), these measurements are likely to be more representative of the
less heterogeneous thermal status under overcast conditions because of
the absence of direct solar radiation. Therefore, another possibility for
deriving all-weather DSUHI temporal patterns is the incorporation of
in-situ GSTs.

The DSUHI temporal patterns identified in this study were primarily
provided from the climatological perspective, i.e., they were presented
on a monthly or seasonal scale using temporally aggregated LST data.
The daily DSUHI temporal pattern will vary according to synoptic
conditions, such as precipitation, cloud coverage and wind speed. For
example, the SUHI effect may be completely eradicated on rainy and/or
windy days (Zhou et al., 2011), i.e., a straight-line pattern is shown. On
days after precipitation events, the daytime SUHII can be intensified
because of the larger water retention capacity of rural lands, which
significantly weakens the heating rate in response to insolation, while
the nighttime SUHII may decline because of the large thermal inertia of
rural lands suppressing the cooling process (He, 2018). The DSUHI may
even exhibit a completely different pattern under specific synoptic si-
tuations, such as heat waves. Further investigations are therefore ne-
cessary to determine how the DSUHI temporal patterns fluctuate in
response to synoptic conditions, as have been presented for CUHI dy-
namics (Runnalls and Oke, 2000). Based on such investigations, the
DSUHI temporal pattern can potentially be predicted using forecasted
synoptic conditions (Huang et al., 2016).

5. Conclusions

The diurnal pattern of the SUHI is an important component of urban
thermal dynamics on multiple time scales, but the recognition and
understanding of the climatology, variety, and taxonomy of DSUHI
temporal patterns for various cities over extensive regions have not
been studied comprehensively. This study has investigated DSUHIs for
354 megacities with very different bioclimates across China using
MODIS LST data as well as a four-parameter DTC model. Our approach
provided the spatiotemporal distributions of DSUHI descriptors and
identified typical DSUHI temporal patterns. Our results suggest that the
diurnal SUHI climatology exhibits a greater variety of patterns than
those of the CUHI. More detailed conclusions are summarized as fol-
lows:

The daily maximum and minimum SUHI intensities (i.e., Imax and
Imin) can both occur at most periods within a daily cycle and they share
a relatively higher probability of occurring in the early morning and

noon/afternoon. In addition, the two extreme intensities cannot be
captured for more than one-half of the cities by the four MODIS transits
due to the mismatch between their occurrence times and the MODIS
transit times. Both strong SUHIs (SUHII > 3 K) and SUCIs
(SUHII < 0 K) can be prevalent in China, with the former phenomenon
observed for 10% of the cities and the latter observed over 50% of the
cities, while by the four transits they are only captured for 6% and 35%
of the cities, respectively. Further assessments show that the monthly
mean (± standard deviation) durations for the strong SUHI and SUCI
are 5.6 (± 4.0) and 7.6 (± 6.1) hours, respectively; and their occur-
rences and durations both exhibit large regional and monthly varia-
tions.

These DSUHI descriptors are extracted from the associated DSUHI
temporal patterns, and in turn they can be used to characterize and then
categorize DSUHI temporal patterns. Five typical DSUHI temporal
patterns were identified: standard-spoon, weak-spoon, quasi-spoon, in-
verse-spoon, and straight-line patterns. These patterns exhibit a clear
north-south contrast, with a general transition from spoon-like patterns
(standard-spoon, weak-spoon, and quasi-spoon pattern) in the northern
temperate bioclimatic zones to the inverse-spoon or straight-line patterns
shown in the southern subtropical zones. Moreover, the category of
DSUHI temporal patterns was revealed to be closely related to the
urban-rural difference in vegetation status (ΔNDVI) and the urban
canyon effect.

We acknowledge that these DSUHI temporal patterns are limited
only to clear sky conditions and are only of climatological significance.
By systematically investigating the variety and taxonomy of DSUHI
climatology over a large spatiotemporal scales, we nevertheless con-
sider that this study provides insights into the true diurnal dynamics of
the SUHI and, as a result, facilitates a more comprehensive inter-
pretation and understanding of SUHI dynamics on multiple time scales.
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Appendix A

To test the credibility of the identified DSUHI temporal patterns, we further compared the DSUHI temporal patterns using the FY-2F and MODIS
LSTs in three megacities (refer to Fig. 1 for their locations). The results of this comparison are provided in Fig. A1.

J. Lai et al. Remote Sensing of Environment 217 (2018) 203–220

217

https://earthdata.nasa.gov/
https://earthdata.nasa.gov/


Fig. A1. Comparison of the seasonal mean DSUHI temporal patterns derived using the FY-2F and MODIS LSTs in 2016 over three megacities including Beijing (a1 to
a4), Xi'an (b1 to b4), and Wuhan (c1 to c4). The FY-based DSUHI temporal patterns plotted as dashed lines denote the cases when the DTC modeling RMSE is
unreasonably high (i.e., larger than 3.0 K).

These results indicate that the MODIS-based DSUHI temporal patterns strongly correspond with those from FY-2F in most cases once the DTC
modeling RMSE of the FY data is smaller than 3.0 K, especially during the extreme seasons (i.e., the summer and winter). One exception is for the
spring in Wuhan, when the DSUHI temporal patterns identified from these two different data sources display opposite patterns. The appearance of
such discrepancies may be due to the following two reasons: First, although the geostationary-based DTC modeling RMSE for this scenario is< 3.0 K,
a small portion of abnormal LST observations was still found, which would probably distort the modeled SUHIIs. Second, considerable large lakes/
water bodies exist within and around Wuhan, which may exaggerate the co-registration issue as well as the difference in spatial resolution between
these two different LSTs, therefore leading to discrepancies in the DSUHI temporal patterns.

Appendix B. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.rse.2018.08.021.
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