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ARTICLE INFO ABSTRACT

Diurnal land surface temperature cycle (DTC) models are useful tools for generating continuous diurnal land
surface temperature (LST) dynamics from temporally sparse satellite observations. Four-parameter DTC models
(FPD) can be applied to tandem polar-orbiting satellite observations that sample the surface at least four times
per day and, therefore, they have received especial attention. Different approaches have been proposed to reduce
the parameter number of DTC models to only four, but a comprehensive and systematic comparison of the
published FPDs and their performance is lacking. In addition, it remains unclear whether there are even better
parameter-reduction approaches (PRAs) for DTC modeling when only four observations per day are available.
Consequently, we chose three semi-empirical DTC models (GOT01, INA08, and GOT09) and one quasi-physical
DTC model (GEM) and obtained nine FPDs with PRAs (e.g., by fixing some of the DTC parameters as constants).
Using in-situ thermal observations from the U.S. Climate Reference Network, as well as LSTs from the geosta-
tionary MSG and FY-2F satellites under clear sky, we compared the performances of these nine FPDs for 24 and 4
available LST observations per day. We obtained the following results: (1) The GOT09- and GEM-type models
generally performed better than the other models with in-situ measurements, while the INA08-ts and GOT09-
type models possessed high accuracies for the geostationary LSTs. (2) For the semi-empirical models, the PRA
‘ts = ts — 17 (where t; and t are the onsets of nighttime cooling and sunset, respectively) is generally more
accurate than the PRA ‘6T = 0’ (where 6T is the day-to-day change of residual temperature). The only exception
is the GOT09-type model, for which the ‘t; = t,; — 1’ strategy is less accurate. (3) GOT09-dT-t, which fixes 6T as
zero and the atmospheric optical thickness (z) as 0.01 for parameter reduction, shows the best performance of
the FPDs. The study gives an overview of commonly-used four-parameter DTC models, provides a foundation for
generating spatio-temporally continuous LST products, and offers guidance for choosing four-parameter DTC
models in various applications.
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region. However, there is a tradeoff between the spatial and temporal
resolutions of most satellite observations, which results in a temporally
discontinuous or even sporadic sampling of the surface and hinders the
retrieval of continuous LST fields. Fortunately, the temporally con-

1. Introduction

As one of the key parameters of land-atmosphere energy exchange,
land surface temperature (LST) has been widely used in various dis-

ciplines, including meteorology and climate, hydrology, and ecology
(Anderson et al., 2008; Karnieli et al., 2010; Qiao et al., 2013; Wan and
Li, 1997; Weng, 2009). Compared with traditional in-situ measure-
ments, satellite thermal remote sensing has become increasingly at-
tractive because of its ability to obtain LSTs regularly over an extensive

tinuous LST dynamics can be reconstructed using diurnal temperature
cycle (DTC) models. By assisting the generation of temporally con-
tinuous LSTs, DTC models (or diurnal LST dynamics) have demon-
strated their value for the retrieval of LST and emissivity (Jiang et al.,
2006), reconstruction of spatio-temporally continuous and/or
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consistent LSTs (Duan et al., 2014a; Gottsche and Olesen, 2001; Holmes
et al., 2016; Inamdar et al., 2008; Liu et al., 2017), estimation of LST
under cloudy condition (Zhang et al., 2015), downscaling/disaggrega-
tion of LSTs (Quan et al., 2014; Zhan et al., 2016), estimation of surface
air temperatures (Bechtel et al., 2014, 2017; Gholamnia et al., 2017;
Zaksek and Schroedter-Homscheidt, 2009), derivation of surface
thermal properties (Holmes et al., 2015; Sobrino and El Kharraz, 1999),
temporal extrapolation of surface fluxes (Hain and Anderson, 2017),
and the monitoring of diurnal surface urban heat islands (Weng and Fu,
2014; Zaksek and Ostir, 2012; Zhou et al., 2013).

Among the DTC models, the quasi-physical model (QPM) and semi-
empirical model (SEM) are the two prevalent categories (Huang et al.,
2014). Using heat flux as the key variable, the QPM acquires the LST
dynamics formula by parameterizing the surface flux components
within the surface energy balance equation (Cracknell and Xue, 1996;
Huang et al., 2014; Price, 1977; Sobrino and El Kharraz, 1999; Xue and
Cracknell, 1995; Zhan et al., 2014). The QPM is relatively complex and
its parameter number may range from two to twelve. By comparison,
the SEM describes LST dynamics directly using LST as the key variable,
and models its dynamics by empirical functions (Gottsche and Olesen,
2001, 2009; Inamdar et al., 2008; Parton and Logan, 1981; Sun and
Pinker, 2005; Van Den Bergh et al., 2007). The structure of the SEM is
generally relatively simple and its parameter number typically ranges
from three to six.

There is a tradeoff between modeling accuracy and the parameter
number of DTC models. DTC models with more parameters usually
possess higher accuracies (Duan et al., 2012; Huang et al., 2014), but
are usually less applicable to satellite LST with a relatively low tem-
poral resolution, e.g., when there are fewer daily overpasses than free
model controlling parameters (Duan et al., 2014b). In contrast, DTC
models with fewer parameters usually reproduce the input data with
lower accuracy, but they are better suited to modelling satellite data
with fewer daily overpasses (Huang et al., 2014; Watson, 2000).

DTC models were initially applied to hourly or sub-hourly thermal
data from geostationary satellites with relatively coarse spatial resolu-
tions (around 3-5 km). Such a coarse resolution, however, greatly limits
the applications that require fine-scale thermal data for the surfaces
(Duan et al., 2014b; Inamdar et al., 2008). LST products obtained by
tandem polar-orbiting satellite systems (e.g., AVHRR and MODIS) can
provide four overpasses per day, have a finer spatial resolution (around
1km), complement the coarse geostationary LSTs, and have been
widely used in related applications (Imhoff et al., 2010; Vancutsem
et al., 2010; Wan et al., 2004). But with only the four transits within a
diurnal cycle, important features on the diurnal variations of specific
applications (e.g., for monitoring of urban heat islands) may be missed
(Duan et al., 2014a; Zaksek and Ostir, 2012). Consequently, four-
parameter DTC models (hereafter termed FPDs) have received especial
attention, since they can fully reconstruct diurnal LST dynamics with
only four observations (Duan et al., 2014b). The FPDs have demon-
strated their utility for many applications requiring full DTC informa-
tion: e.g., the timing of daily maximum LST, estimation of diurnal mean
LST and diurnal LST range, and retrieval of surface thermal inertia
(Holmes et al., 2013; Sobrino and El Kharraz, 1999; Zhan et al., 2014).

Due to their usefulness, great progress has been achieved in devel-
oping FPDs. Generally, FPDs can be divided into two categories: The
first focuses on reducing the parameter number of the DTC models to
four, by fixing one or more of their parameters as constants for in-
dividual cases. For example, Schidlich et al. (2001) assumed that the
day-to-day change of residual temperature (i.e., §T) of semi-empirical
DTC models approximates to zero in simple cases; Holmes et al. (2013)
suggested that the start of the attenuation function (termed t;) can be
equated to the time when the temperature has decreased to half its
maximum value; and Duan et al. (2014b) proposed that t; is often ex-
actly one hour before sunset (ts). Similarly, by the parameterization of
the upward surface fluxes, FPDs can be directly derived from quasi-
physical model DTC models (Huang et al., 2014; Sobrino and El

ISPRS Journal of Photogrammetry and Remote Sensing 142 (2018) 190-204

Kharraz, 1999; Zhan et al., 2014). For the second FPD category, DTC
models with more than four parameters are solvable using only four
daily observations when additional information (e.g., from the tempo-
rally or spatially adjacent LST pixels) is incorporated. The additional
information/knowledge can be the monthly LST dynamics obtained
from land surface models, or geostationary LSTs that provide a back-
ground field for solving DTC models (Aires et al., 2004; Jin and
Dickinson, 1999; Sun and Pinker, 2005; Zhou et al., 2013); day-to-day
temperature continuity within a multi-day period (Duan et al., 2013);
or the consistency of component temperature dynamics within neigh-
boring pixels (Quan et al., 2014).

In addition to the temporal continuum or spatial consistency hy-
pothesis, the second category of FPDs is relatively complex and may
induce additional uncertainties caused by the ancillary data used for
derivation of component information. By contrast, the structure of the
first category of FPDs is relatively simple, and they can be operated
based on LST data within a single day for a single pixel. In other words,
the first category of models has the advantage to be implemented more
easily and can therefore be more suitable for related applications.
Previous parameter-reduction approaches (PRAs) were only tested on a
single specific DTC model. The reduced parameters as shown (e.g., 6T
and t;) appear in most of the five-parameter semi-empirical DTC models
including GOTO1 (Gottsche and Olesen, 2001) and INAO8 (Inamdar
et al., 2008), as well as the six-parameter semi-empirical DTC model
GOTO09 (Gottsche and Olesen, 2009). Therefore, these two PRAs can be
applied to all these models. In addition, the parameter number of the
QPM can be adjusted to four if specific parameterization schemes are
used (Huang et al., 2014; Zhan et al., 2014).

With suitable PRAs, it is expected that several FPDs can be gener-
ated; however, several challenges remain for these potential models:
First, a comprehensive assessment of the performances of these poten-
tial FPDs is lacking; and second, it remains unclear whether there exist
PRAs that are able to generate FPDs with even higher accuracies. To
address these issues, the present study aimed to compare both the
hourly and overall performances of the FPDs, and further to identify the
best FPDs under different cases. Our study is based on several in-situ
thermal measurements within very different biomes, as well as LSTs
retrieved from geostationary satellites across an extensive scale. Our
findings are potentially useful for selecting FPDs for practical applica-
tions, and for the generation of temporally continuous LST data from
four overpasses in a daily cycle; thus, they are also potentially useful for
related applications.

2. Data

To cover as many land cover types across the globe and to use as
many data sources under various bioclimates as possible, we in-
corporated both in-situ surface temperatures and LSTs obtained from
geostationary satellites (Fig. 1). The in-situ LSTs were collected by the
United States Climate Reference Network (USCRN) (Fig. 1a), while the
LSTs were retrieved by the Land Surface Analysis Satellite Application
Facility (LSA SAF) from the Spinning Enhanced Visible and Infrared
Imager (SEVIRI) onboard Meteosat Second Generation (MSG), operated
by the European Organisation for the Exploitation of Meteorological
Satellites (Fig. 1b), as well as by the FengYun-2F (FY-2F), operated by
the Chinese Meteorological Administration National Satellite Meteor-
ological Center (Fig. 1c).

2.1. In-situ measurements

We chose the in-situ measurements from the USCRN because this
network contains surface cover types with a sufficient number of
varieties spanning very different bioclimates. The USCRN provides
observations of most of the basic meteorological variables at 5-minute
intervals, including air temperature, LST, wind speed, and relative
humidity. The 5-minute LST data (i.e., 288 observations in a single day)
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Fig. 1. Geolocations of the sites (regions) where the associated diurnal LSTs cycles were obtained. (a) region where in-situ measurements were used, blue triangles
representing site locations; (b) region where MSG-SEVIRI LSTs were obtained, red solid circles representing the chosen pixel locations; and (c) region where FY-2F
LSTs were used; the color representing the LST value after temporal aggregation. The numbers ‘0’ to ‘16’ denote the corresponding land cover types under the
International Geosphere-Biosphere Programme (Friedl et al., 2002). (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

Table 1

The selected USCRN sites and the number of clear-sky diurnal cycles of in-situ data.

Climate zone Site name Long./Lat. Elevation (m) Day number Land cover type
Tundra AK Barrow 4 156.61W/71.32N 5 7 Grass

Humid Subtropical AL Selma 13 87.24W/32.46N 62 12 Grass
Mid-latitude Desert AZ Yuma 27 114.19W/32.84N 189 23 Bare soil
Mediterranean CA Bodega 6 123.07W/38.32N 12 7 Shrub

Humid Continental (cool summer) MI Chatham 1 86.92W/46.33N 277 9 Grass

Semiarid Steppe MT Wolf Point 29 105.1W/48.31N 623 9 Grass

Humid Continental (warm summer) OH Coshocton 8 81.78W/40.37N 313 8 Tree

Marine Westcoast WA Quinault 4 123.81W/47.51N 97 9 Grass

Highland Alpine WY Moose 1 110.71W/43.66N 1972 18 Grass

were used to evaluate the performances of the FPDs. It should be noted
that brightness temperature (BT), rather than LST, was provided by the
USCRN (i.e., the emissivity effect was not considered); however, pre-
vious studies have indicated that comparison of model performances is
still possible because the use of BTs has only a limited effect on model
performance (Gottsche and Olesen, 2001; Huang et al., 2014; Van Den
Bergh et al., 2007). We chose sites with relatively homogeneous ter-
rains and continuous land cover types; i.e., the measurements of diurnal
surface temperatures are minimally impacted by adjacent surface ob-
jects such as high trees and/or mountains, because these undulations
would likely alter the LST dynamics because of the induced shadows,
especially when the solar altitude is low. To include the diurnal LST
dynamics of a sufficient number of land cover types within different
bioclimates, we finally selected nine sites, each representing a typical
land surface type within a specific bioclimate, over which a total of 102
diurnal cycles ranging from 2013 to 2015 were used for comparison
(Table 1). For each site, at least seven diurnal cycles over different
seasons were identified to represent possible land cover change due to
vegetation phenology.

2.2. LSTs obtained from geostationary satellites
(1) MSG-SEVIRI data

SEVIRI samples the surface every 15 min; i.e., 96 observations can
be obtained in a single diurnal cycle. In addition, its LST product has a
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3-km sampling distance at nadir. The LSTs were retrieved by LSA SAF
(Trigo et al., 2011) with a split-window algorithm; it has an accuracy of
around 1.0 K (Freitas et al., 2010; Gottsche et al., 2016). We chose 111
diurnal cycles of SEVIRI LSTs under clear sky in 2016. These cycles
were obtained over pixels covered by multiple land cover types in
different seasons (see Fig. 1b and Table 2). The quality control flags of
the SEVIRI LSTs are either equal to or above the nominal, which

Table 2
Elaborate information on the selected MSG-SEVIRI pixels under clear sky.

Site  Long./Lat. Day num. Elevation (m) Land cover type

1 5.53W/37.46N 4 77 Croplands

2 3.18E/49.03N 2 141 Croplands

3 30.95E/37.12N 7 157 Closed shrublands

4 40.36E/35.81N 11 320 Barren or sparsely vegetated
5 49.55E/18.75N 8 349 Open shrublands

6 9.02E/39.78N 6 369 Closed shrublands

7 23.24E/24.52N 18 388 Barren or sparsely vegetated
8 45.30E/20.74S 7 397 Savannas

9 8.10E/15.72N 5 509 Open shrublands

10 15.64E/7.86N 5 512 Wood Savannas

11 10.40E/26.92N 14 558 Barren or sparsely vegetated
12 36.97E/40.58N 5 571 Croplands

13 46.02E/9.22N 4 798 Open shrublands

14 14.93E/20.358 6 1021 Open shrublands

15 24.02E/25.77S 4 1086 Grasslands

16 33.49E/7.10S 5 1279 Croplands
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correspond to LST uncertainties between 1.0 and 2.0K or less than
1.0K, respectively.

(2) FY-2F VISSR data

The LST products from the Visible Infrared Spin Scan Radiometer
(VISSR) onboard the FY-2F, a geostationary satellite launched by China
in Jan. 2012, were also used. These VISSR LSTs were also retrieved
using a split-window algorithm, with spatial and temporal resolutions
of 5km and 1 h, respectively (Tang et al., 2008). The study employed
all the valid (cloud-free) LSTs during Jan. 2016, which cover a large
part of Mainland China; northeast China was not included (Fig. 1c).
Note that the FY-2F LST data have not been validated extensively and
there is no quality control flag available for these data. Therefore, the
cloud-free LSTs during this month were temporally aggregated (i.e.,
temporal compositing) according to their respective acquisition hour
across a diurnal cycle to reduce the random errors for the retrieved
LSTs. This procedure also aims at obtaining a dataset with as few gaps
due to clouds as possible, based on which the pixel-by-pixel assessments
of FPDs are feasible. This means that, in contrast to the MSG-SEVIRI
data, there is only one DTC model fit per pixel for the FY-2F data.

3. Methodology
3.1. Summary of investigated FPDs

Three types of semi-empirical DTC models, including GOTO1 pro-
posed by Gottsche and Olesen (2001), INAO8 by Inamdar et al. (2008),
and GOTO09 by Gottsche and Olesen (2009), and one type of quasi-
physical model developed by Huang et al. (2014) and Zhan et al.
(2014), were modified using PRAs or adaptions to restrict the number
of free parameters to four.

3.1.1. GOTO1-type and INAO8-type models

GOTO01 and INAO8, proposed by Gottsche and Olesen (2001) and
Inamdar et al. (2008), respectively, are two semi-empirical models with
similar formulations. They both use a cosine function to depict LST
dynamics during the day, while different empirical functions are used
for the nighttime cooling process, with the former/latter employing
exponential/hyperbolic functions. The general form of these two
models is as follows:

Taay (1) = Ty + Tycos[maw™ (t=tw)], £ <t

Thig (1) = (Ty + 8T)+[T, cos[mw™ (t—t)—=ST]-f (), t > & @
where Tg,y(t) and Thig(t) denote the temperature dynamics during the
day and night at time ¢, respectively; T, is the residual temperature
around sunrise; T, is the temperature amplitude; t;, is the time when
temperature reaches its maximum; ¢t is the time when free attenuation
begins; ST is the day-to-day change of residual temperature; w is the
half-width of the cosine term and can be determined from the daytime
duration; and k is the attention rate of nighttime temperature decrease.
The formulas for calculating w and k are given in Gottsche and Olesen
(2001). With f(t) = exp[—(t — k11, Eq. (1) denotes GOTO1; while it
becomes INAO8 with f(t) = k-(k +t — )"

GOTO01 and INAO8 both contain five parameters (i.e., Ty, Ta, tm, ts,
and 87). As introduced in Section 1, the parameter number of these two
models can be reduced to four by either setting 8T to zero (i.e., §T = 0)
(Schadlich et al., 2001) or fixing t; to one hour before sunset (i.e.,
ts = tis — 1, where t is the sunset time) (Duan et al., 2014b). Using
these two strategies, we obtain four FPDs, including GOT01-dT (i.e.,
GOTO1 with ‘6T = 0%), GOTOl-ts (i.e, GOTOl with ‘t; =t — 17),
INAOS8-dT (i.e., INAO8 with ‘6T = 0’), and INAOS8-ts (i.e., INAO8 with
‘ts = tis — 17). Note that t; can also be approximated as the time when
half the temperature decrease from maximum has occurred (i.e.,
t, =ty + w7 *-arccos [0.5(1 + 8T/T,)]), as demonstrated by Holmes
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et al. (2013). The results related to this PRA are given in Appendix A
because the PRA under ‘t; = t;; — 1’ is comparatively simpler and has a
better performance.

3.1.2. GOTO09-type models

Based on GOTO1, Gottsche and Olesen (2009) further considered the
relatively slow LST increase after sunrise to be due to the significantly
higher total atmospheric optical thickness (TOT) at large sun zenith
angles. This revised DTC model is hereafter termed GOTO09 and is for-
mulated as follows:

77:lzny(t) =T+ Tacos(ez)cos_l(ez,min)'e[mmin_m<92)]r: t<ts
Thig(t) = To + 6T + [T, c08(6,5)c0s™ (6 min)-el™min =" 7

—5T] e_lez(e_GS), t>t )
where 0 is the thermal hour angle with respect to thermal noon at time
tm, and is calculated as 12715t (¢t — t,); 6, is the thermal zenith angle
corresponding to 6; 6, min is the minimum zenith angle when t = t,; 6
is the thermal hour angle when t = t;; 0,5 is the thermal zenith angle
when 0 = 6, m(0,), Mui,, and m(0,,) are the relative air mass at 6,,
0,,min, and O, respectively; and r is the TOT. In total, GOT09 includes
six controlling parameters (i.e., Ty, Ty, tm, ts, 6T, and 7).

The parameter number of GOT09 can be reduced to five by either of
the two PRAs (i.e., ‘6T = 0’ and ‘t; = t,, — 1’) summarized in Section
3.1.1. For the TOT (i.e., 7), the discussion in Section 5.1 suggests that
this variable can be fixed to 0.01 for general use, which yields a new
PRA ‘z = 0.01’ to reduce the number of parameters. Therefore, we
obtain three GOT09-type sub-models, termed GOT09-dT-t, GOT09-ts-t,
and GOTO09-dT-ts, wherein ‘dT’, ‘ts’, and ‘t’ denote the use of the PRA
‘6T =0, ‘ty = t;x — 1’, and ‘z = 0.01’, respectively.

3.1.3. GEM-type models

Directly derived from the solution of the heat conduction equation
constrained by the surface energy balance equation, Zhan et al. (2014)
developed a quasi-physical model (hereafter termed GEM-0) that only
contains four free parameters. GEM-o can be written as follows:

T(t) = Ty + 0(t=054) + 3 Myg(t)

n=1

€))

where T, is the daily average temperature; o is the rate of change of the
day-to-day temperature difference (DTD); t, is the total number of
seconds within a daily cycle (i.e., 86,400s); and M, and g(t) are two
intermediate functions that can be expressed by thermal inertia (P) and
the linear coefficient for the upward surface fluxes (h;) (see Appendix B
for more details). Only four controlling parameters, Ty, P, h;, and o, are
needed for GEM-o.

To better quantify the upward surface fluxes, Huang et al. (2014)
disregarded the term related to o, and further proposed that the linear
coefficient of the upward fluxes (i.e., h;) should not be constant but
rather a function of time(t) (i.e., hy = 5o + nt, where 5o and 7, are the
offset and gain, respectively). This new quasi-physical DTC model also
includes four parameters (T4, P, 77, and 7o) and is hereafter termed
GEM-n.

3.1.4. Summary of the FPDs

Through the aforementioned PRAs to the semi-empirical DTC
models, and/or the adaptions of the quasi-physical DTC models, we
finally acquire nine FPDs for comparison, which are summarized in
Table 3.

3.2. Solution of forward FPDs
We employed the Levenberg-Marquardt algorithm to fit the FPDs to

the available data and to determine the values of their free parameters.
The initial values of the four parameters for each FPD were
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Table 3
General information on the nine FPDs used for comparison.
# Name Category Parameters PRA
1 GOTO01-dT SEM’ To, Tay tmy sy 5T ST=0
2 GOTO1-ts SEM To, Tay tm, sy 8T t=ts—1
3 INA08-dT SEM Tos Tas tm, ts, 6T 8§T=0
4 INAOS-ts SEM To, Tay tmy sy 5T =t —1
5 GOT09-dT-t SEM Tos Tas tm, ts, 6T, T 8T = 0; 7= 0.01
6 GOT09-ts-t SEM Tos Tas tm, ts, 6T, T ty =t — 1; 7= 0.01
7 GOTO09-dT-ts SEM To, Ta tm, ts, 6T, T ST=0;t,=ts— 1
8 GEM-o QPM P, Tghy, 0 Unnecessary
9 GEM-n QPM P, Ty, 1o, Mm Unnecessary

* SEM and QPM denote semi-empirical and quasi-physical DTC models, re-
spectively.

predetermined according to the local land cover types and background
climate (Table 4). Note that the initial values for Site AK Barrow 4 are
quite different from the other values because this site is located within
the Arctic Circle where extreme conditions (e.g., polar night with ex-
tremely low LSTs) occur. The same initial values are used for the 8T
models (i.e., GOT01-dT, INA08-dT, GOT09-dT-t and GOT09-dT-ts), the
t; models (i.e., GOTO1-ts, INAO8-ts, GOT09-ts-t and GOT09-dT-ts), and
the GEM models (Table 4).

3.3. Design of the FPD model comparison

The performance of a DTC model depends on the number and
quality of observations used as input. We employed two schemes to
fully assess the performances of the FPDs. The first uses hourly data
within a daily cycle; i.e., 24 LST observations starting from the hour
around sunrise to the same hour of the following day. The second uses
only four observations, which are exactly sufficient to resolve the four
parameters of the FPDs and which were provided at the times similar to
the MODIS overpasses; i.e., 10:30, 13:30, 22:30, and 01:30 (local solar
time). The fitting errors of the FPDs are anticipated to be higher under
the 4-input than the 24-input schemes, but the relative performance
between the FPDs will likely change under the different schemes. We
should clarify that the fitting of DTC models in this study was con-
ducted day-by-day owing to the simplicity and robustness of this ap-
proach. For the performance assessment of each FPD, we provide both
the daily averaged and hourly root mean square errors (RMSEs) be-
tween the predicted and original hourly LST data. We use boxplots to
illustrate the daily mean error distribution of a certain FPD for DTC
modeling over different stations (pixels) and for different diurnal cy-
cles, i.e., the boxplots in Figs. 2, 4, 6, and 8 describe the overall per-
formances of entire day RMSE among all diurnal cycles and stations
(pixels). By comparison, only hourly mean errors (without error dis-
tributions) of the FPDs are presented in Figs. 3, 5, 7, and 9 to avoid
redundancy. With both the in-situ and geostationary LSTs and these two

Table 4

Initial values of the controlling parameters for the nine FPDs used for comparison.
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Fig. 2. Boxplots of the overall RMSEs for the nine FPDs under the 24-input
scheme with in-situ data. The top and bottom whiskers are the 5th and 95th
percentile of the RMSEs, respectively; the top and bottom of the box are the
mean RMSE plus and minus one standard deviation of the RMSEs, respectively;
and the band and point inside the box denote the median and mean RMSE for
each model, respectively. The performances of GOT01, INA0O8, and GOTO09 are
added as references in the gray shaded area (on the right). The bidirectional
arrow shows the accuracy loss caused by using the PRAs ‘6T = 0’ and ‘z = 0.01’;
i.e., between GOT09 and the best GOT09-type models (GOT09-ts-t) with four
free parameters.

different comparison schemes, the model performances are critically
compared under four cases, including the in-situ data under the 24-input
(Case #1) and 4-input schemes (Case #2), and the geostationary data
under the 24-input (Case #3) and 4-input schemes (Case #4).

4. Results
4.1. Case #1: In-situ data under the 24-input scheme

Performance comparisons for the nine FPDs under the 24-input
scheme with in-situ data during an entire day are shown in Fig. 2 with
boxplots. Boxplots of RMSE not only illustrate the mean RMSE of each
FPD, they also include the information on the error spread/distribution.
To illustrate the model performances over the diurnal cycle, the hourly
errors are presented in Fig. 3. In addition, the overall and hourly RMSEs
of the original models (including GOTO01, INAO8, and GOTO09) that
possess more than four free parameters are also added as references in
Figs. 2 and 3 to evaluate the accuracy loss caused by using the specific
PRAs.

Under this case, the results show that the original models with more
than four free parameters, including GOT01, INA08, and GOT09, all

Parameter (unit) ST series ts series

GOT09-dT-ts GEM- GEM-o

To (K) Tinin Tmin
T, (K) Tmax — Tmin Tmax — Tmin
tm (h) 13 13
t; (h) b=t 1 -
ST (K) - 0

. _ _
PUm 2K 's~1/2) _ _
Tq (K) - _
o Wm ™K~ - -

m Wm™2K"'s™h - -
hy (Wm~*K™") - _
o(Ks™) - -

Timin
Tmax — Tmin - _
13 - -

Timean

- - 10

*
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Trmin> Tmax» @0d Tiean represent the daily minimum, maximum, and mean input LST observations, respectively.
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In-situ data under 24-input scheme (K)
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INAO8-dT
INAO8-ts
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Fig. 3. Hourly RMSE:s at each local solar time since sunrise for the nine FPDs, under the 24-input scheme with in-situ data. The performances of GOT01, INA08, and

GOTO09 are added as references.
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Fig. 4. Same as Fig. 2, but without the reference under the 4-input scheme.

perform better than the corresponding FPDs that are of the same type.
Nevertheless, the loss of accuracy caused by using PRAs remains small —
only 0.15K for the GOTO1-type models, 0.23K for the INAO8-type
models, and 0.30K for the GOT09-type models (GOT09-ts-t). The re-
lative reduction in accuracy for the GOT09-type models can be attrib-
uted to the loss of two free parameters (i.e., from six to only four).
Among all the FPDs, the GOT09- and GEM-type models perform
significantly better than the GOT01- and INAO8-type models. Moreover,
they perform even better than GOTO1 and INAO8 with five free para-
meters (Fig. 2): the mean RMSEs of the GOT09- and GEM-type models
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Fig. 6. Same as Fig. 2, but for the MSG-SEVIRI LSTs.

are close to or slightly lower than 1.0 K, while the mean RMSEs of the
GOTO01- and INAO8-type models are around 1.5K. The hourly com-
parisons reveal that the overall better performances of the GOT09- and
GEM-type models are mostly attributable to their superior capability of
modelling the relatively slow LST increase after sunrise (see Fig. 3),
which is due to the much longer atmospheric path and the weaker solar
radiation reaching the surface at that time. Specifically, the GOT09-
type models accommodate this slow LST increase by adding TOT (z) as
a controlling variable (Gottsche and Olesen, 2009). The GEM-type
models have considered this sluggish LST increase since at least Watson

In-situ data under 4-input scheme (K) -
GOTO01-dT 100
GOTO01-ts 9.0
INAO8-dT 8.0
INAO8-ts 7.0
GOTO9-dT-1 g'g
GOTO09-ts-1 40
GOT09-dT-ts 3.0
GEM-o 2.0
GEM-n 1.0
sunrisetime+0 1 2 3 4 5 6 7 8 91011121314151617181920212223
Hour (h)

Fig. 5. Same as Fig. 3, but without the reference under the 4-input scheme.
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Fig. 7. Same as Fig. 3, but for the MSG-SEVIRI LSTs.
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Fig. 8. Same as Fig. 6, but for the 4-input scheme.

(1975), in which an attenuation function of the solar radiation similar
to that used by Gottsche and Olesen (2009) was adapted.

The results shown in Fig. 3 reveal that this specific consideration
maintains mean prediction RMSEs of the GOT09- and GEM-type models
at approximately 1.0K around sunrise, while for the other models
RMSEs increase to 3.0K or higher. Our results also reveal that the
prediction RMSEs of the three GOT09-type models are quite similar
(Fig. 3). Interestingly, this finding suggests that the high performance
around sunrise is retained even when TOT (z) is set as a constant (i.e.,
0.01), as indicated by the roughly equal performance between the three

three GOT09-type models (Fig. 2). This is probably due to the structural
difference between the two types of models. The semi-empirical models
mostly employ two fixed piecewise functions, usually with harmonic
and exponential curves, to depict daytime and nighttime LST dynamics,
respectively. By comparison, a series of harmonic functions is added
together and used to describe the diurnal LST dynamics. The less rigid
functional forms of the quasi-physical models likely contribute to its
greater flexibility in the nonstandard cases such that the LST may oc-
casionally rise (or fluctuate) within the overall cooling trend sub-
sequent to sunset (Huang et al., 2014), which is not uncommon for in-
situ data because of microclimate variations. The results further illus-
trate that the performances of the two GEM-type models are generally
similar, with overall RMSEs of 0.86 and 0.85K for GEM-o and GEM-,
respectively.

Under this case, we further observe that the GOTO1-type models
perform slightly better than the INAO8-type ones, which is probably
caused by the different cooling curves used by the two model types for
nighttime. Closer investigation shows that the hyperbolic function used
to represent nighttime cooling, when compared with the exponential
function, is less capable of acquiring computationally stable solutions
because hyperbolas are more sensitive to the predetermined initial
values and small LST variations that are prevalent for in-situ LSTs. In
addition, the PRA ‘t; = t;; — 1’ is generally better than ‘6T = 0’, al-
though the associated RMSE variations frequently overlap (see Fig. 2).
This behavior is also observed at nighttime and around sunrise (Fig. 3).

MSG-SEVIRI data under 4-input scheme (K) -
GOTO01-dT
8.0
GOTO01-ts
7.0
INAO8-dT
6.0
INAO8-ts
5.0
GOTO09-dT-1
4.0
GOTO09-ts-1 30
GOTO09-dT-ts
2.0
GEM-o
1.0
GEM-n 0.0
sunrisetime+0 1 2 3 4 56 7 8 91011121314151617181920212223

Hour (h)

Fig. 9. Same as Fig. 7, but for the 4-input scheme.
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4.2. Case #2: In-situ data under the 4-input scheme

Compared with the validations based on the 24-input scheme, the
free parameters of the FPDs can be precisely determined by only four
LST observations over a diurnal cycle (i.e., the 4-input scheme). This
case is a good test of model stability and sensitivity as well as of its
ability to predict an entire diurnal LST cycle when only four observa-
tions are available. The RMSEs of the nine models for an entire diurnal
cycle as well as for the hourly errors are provided in Figs. 4 and 5,
respectively. We found similarities using the 24- and 4-input schemes:
(1) the GOT09- and GEM-type models continue to perform better than
the other models; and (2) the relative performances of the three types of
semi-empirical models remain similar, with the following decreasing
order: GOTO09-type models > GOTOl-type models > INAO8-type
models.

However, we observed several differences between Cases #1 and 2:

First, the prediction capabilities of these models are reduced with
the 4-input scheme when compared with the 24-input scheme, espe-
cially around sunrise (Figs. 3 and 5). The comparisons show that within
this period, the mean RMSEs for the GOT09- and GEM-type models
increase by approximately 1.0 K (from around 1.0 to 2.0 K), while those
for the GOTO1- and INAO8-type models increase by approximately 5.0 K
(from ~5.0 to 10.0 K). The significant decrease of model performance
around sunrise can be partly attributed to the selection of the four
observations close to the times of the four daily MODIS overpasses, i.e.,
no observation around sunrise has been used. This explains the de-
creased performance of the GEM- and GOT09-type models when the 4-
input scheme was employed. We nevertheless infer that the neglect of
the slow temperature increase around sunrise contributes more to the
performance decrease of the GOT01- and INAO8-type models, because
the mean RMSEs of the GEM- and GOT09-type models remain relatively
low around sunrise (Fig. 5).

Second, the prediction capabilities of the GEM-type models become
lower than GOT09-dT-t and GOTO09-ts-t, but slightly higher than
GOTO09-dT-ts, which differs from the highest capability of the GEM-type
models as revealed under Case #1. The higher complexity of the GEM-
type models by using harmonic series, as analyzed in Section 4.1, leads
to their high performances for handling nonstandard cases under the
24-input scheme. However, such a high degree of complexity also re-
sults in a reduced robustness under the 4-input scheme.

Third, differing from the invariably better performance for the PRA
‘ts = tis — 1’ when compared with ‘6T = 0’ as, shown in Fig. 2, the PRA
fitness depends on the model type under Case #2. The box plots for the
GOTO01- and GOT09-type models in Fig. 4 indicate that ‘6T = 0’ is at
least equal to or superior than ‘t; = t;; — 1°, while the former strategy is
less effective than the latter for the INA0O8-type models, which was also
confirmed by Duan et al. (2014b).

4.3. Case #3: Geostationary data under the 24-input scheme

Daily mean and hourly performance comparisons for the nine FPDs
under the 24-input scheme with geostationary satellite data are shown
in Figs. 6 and 7, respectively. Again, the performances of the original
GOTO1, INAO8 and GOT09 models are added as references. Satellite-
derived LSTs, when compared with the ground-based measurements,
are less affected by the microclimate at the local scale, but they contain
additional uncertainty from the LST retrieval algorithm (1.0-2.0K,
which is much higher than that of the in-situ LSTs). The results in Case
#3 are similar to those under Case #1, such that the accuracies of the
GOTO1- and INAO8-type models, on average, are lower than those of
the GOT09-type models, which again can be attributed to the neglect of
the slow LST increase after sunrise for the former two models (see
Fig. 7). The results also resemble those under Case #2, e.g., GOT09-dT-
t possesses the highest accuracy in all FPDs and even performs better
than the GOTO1 and INAO8 models. In addition, the accuracy losses
caused by the use of PRAs remain small and may even become tiny in
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several cases (the accuracy losses are 0.13, 0.09, and 0.16 K for the
GOTO1-, INAO8-, and GOT09-type models, respectively).

However, we have interpretations which differ from those of the
previous two cases: First, in contrast to the significant contrast among
models under Cases #1 and #2, the performances among different FPDs
are much closer, with the highest daily mean RMSE of 1.56 K (for
INA08-dT) and the lowest of 0.86 K (for GOT09-dT-t). The relatively
improved performances of the GOTO1- and INAO8-type models under
Case #3 compared with those under Case #1 are probably caused by
the fact that the temporal variations of the satellite-derived LSTs are
smoother, since smoothness is an underlying assumption of all the DTC
models. Second, the GO09-dT-t performs considerably better than the
other two GOT09-type models, including GOT09-ts-t and GOT09-dT-ts,
and it also performs better than the two GEM-type models (i.e., GEM-o,
and GEM-n). This result differs from that obtained under Case #1,
where the GEM-type models performed better. As before, this can be
explained by the temporally smoother satellite LSTs. The flexibility of
the GEM-type models in handling nonstandard cases (e.g., a possible
LST increase at night) makes it more unstable in standard cases (i.e.,
clear sky with no or low wind speed).

4.4. Case #4: Geostationary data under the 4-input scheme

Daily mean and hourly performances for the nine FPDs under the 4-
input scheme with geostationary satellite data are shown in Figs. 8 and
9, respectively. Under this case, the model performances in decreasing
order are: GOT09-dT-t > GOT09-dT-ts > GOTO01-dT > GOTO1l-ts >
INAO8-ts = GOT09-ts-t = GEM-type models > INA08-dT (Fig. 8). The
hourly RMSEs in Fig. 9 again suggest that this order of performance is
directly related to the modelling ability to correctly reproduce the LST
dynamics during the first 3-4 h after sunrise.

In contrast to the three previous cases, the assessments in Case #4
further reveal that the prediction capabilities of the GEM-type models
greatly decrease, with the daily mean RMSEs marginally higher than
2.0K (Fig. 7). The hourly assessments reveal that this is mainly due to
the decreased performance around sunrise. Again, we infer that this is
largely because of the high degree of complexity of this type of model
which restricts their robustness with a small number of inputs. This may
also partly be because the parametrization of the atmospheric trans-
mittance attenuation by simply multiplying by 1-0.2 - (cosZ) ~ %% is far
from accurate (see Appendix B). Also differing from the assessments
under Case #3, the PRA ‘6T = 0’ is slightly better for the GOTO01-type
models under Case #4, while PRA ‘t; = t;; — 1’ is slightly better under
Case #3.

To illustrate the spatial variations of the prediction capabilities of
the FPDs, we provide maps of daily mean RMSEs for GOT01-dT, INAO8-
dT, GOT09-dT-t, and GEM-0, each representing the model with the
lowest prediction error within its own categories (Fig. 10). With hourly
aggregated LSTs from FY-2F for January 2016 (not LSTs under a diur-
nally clear sky), Fig. 10 shows that the daily mean RMSE of the GOT09-
dT-t over a large part of mainland China is 1.48 K, which is about
0.3-0.4 K lower than for the other three models. The errors of GOT09-
dT-t are generally small (around 1.0K) except over several small re-
gions within the southern subtropical zone, where the errors of the
other three models are also large. Close examination of the original data
illustrates that over these regions the diurnal variations of the monthly
mean LSTs are not as smooth as expected for LST dynamics under clear
sky, and such fluctuated LST dynamics directly results in a relatively
high error for all FPDs. Note that the southwest-toward-northeast
boundaries, across which the RMSEs change abruptly, are caused by
anomalies in the original LST product.
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Fig. 10. Spatial variations of the daily mean RMSEs for the four FPDs under the 4-input validation scheme. (a) GOT01-dT, (b) INA08-dT, (c) GOT09-dT-t, and (d)

GEM-o.

5. Discussion
5.1. Optimal value of = for GOT09-type models

To reduce the number of parameters of the DTC models to four, it is
sometimes necessary to fix some of the free parameters. The afore-
mentioned evaluations on the GOT09-type models indicate that most of
the predicted LST errors occurring shortly after sunrise can be com-
pensated (with only a very small loss of accuracy) by setting TOT () to
a constant. To obtain a representative and optimal value of 7 for various
cases, including dissimilar land cover types and background climates,
we tested a series of 7 values ranging from 0.0 to 0.2, which covers most
practical situations, and identified the best one according to the
achieved accuracy. The error, as a function of 7 for both the in-situ and
geostationary LSTs under the 24- and 4-input schemes, is shown in
Fig. 11.

The results in Fig. 11 confirm the previous assessment that GOT09-
dT-t performs better than GOT09-ts-t, and the superior performance of
the former model generally becomes more pronounced as r increases.
The only exception occurs under the 24-input scheme with a low ¢
value, for which GOT09-ts-t is slightly better (Fig. 11a and b). In
general, the RMSEs of the GOT09-type models follow a decreasing and
then an increasing trend. Typically, they decrease rapidly when ¢
changes from 0.0 to a value marginally greater than zero (e.g., 0.003 or
0.01), and gradually increase when 7 continues to increase. For the in-
situ and SEVIRI LSTs, the RMSEs vary considerably with 7 and they
cover a range of about 1.0 K; while the RMSE variations for the VISSR
LSTs are considerably smaller with a maximum change of about 0.3 K.
More specifically, the optimal 7 is 0.01 and 0.003 for the 4- and 24-
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input schemes with in-situ LSTs (Fig. 11a). With SEVIRI LSTs, the op-
timal value remains at 0.01 for the GOT09-dT-t, but decreases (i.e.,
0.001) for GOTO09-ts-t (Fig. 11b). Based on VISSR LSTs, its optimal
value is likewise relatively low (i.e., 0.002-0.005) for GOT09-ts-t, but it
increases significantly to around 0.02-0.06 for GOT09-dT-t (Fig. 11c).
We infer that the difference in terms of determining the optimal value
of 7 using the VISSR LSTs, compared with using the two other types of
LSTs, is probably because temporally aggregated LSTs, rather than LSTs
under a true clear sky, were used for the VISSR data.

In summary, by considering these different cases as a whole, setting 7
to 0.01 appears to be an acceptable tradeoff. Though the setting of z as a
constant (0.01) may not be optimal for all cases, this value is generally an
acceptable tradeoff because (1) it is close to the optimal value of z de-
termined under different cases and (2) RMSE differences between the
best 7 and 0.01 under many different cases are negligible. Note that al-
though the optimal value of 7 (0.01) was determined using data from
multiple cases, the optimal value of 7 for the 4- or 24-input schemes may
differ from the true TOT. This is because the accurate determination of ¢
is most sensitive to the LST observations shortly after sunrise, while there
are only approximately 1-3 LST observations as inputs, even for the 24-
input scheme. In other words, once abundant LST observations over an
entire diurnal cycle (but very few for shortly after sunrise) are available,
the value of 7 resolved by numerical methods (i.e., nonlinear fitting)
would probably contain additional information on LST dynamics in ad-
dition to the physical TOT. The determined value of z, therefore, becomes
inconsistent with the true TOT. To estimate TOT precisely, temporally
denser data (e.g., 5- or 15-min LSTs) are needed to ensure that an ade-
quate number of LST observations is accessible during the short period
after sunrise, as used by Gottsche and Olesen (2009).
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Fig. 11. Errors of two GOT09-type models as a function of  when provided with 4 and 24 input LSTs: (a) in-situ data, (b) LSA SAF LST derived from MSG-SEVIRI, and

(¢) LST derived from FY-2F VISSR.

5.2. Uncertainty discussions for geostationary satellite-derived LST

Due to the uncertainties in atmospheric water vapor estimate and
emissivity determination, which are typically required inputs of LST
retrieval algorithms (Wan and Li, 1997; Freitas et al. 2010). LST pro-
ducts derived from geostationary satellites possess an uncertainty of
1.0-2.0K (refer to the descriptions on QC flags given in Section 2.2),
which may affect the relative performance of the nine investigated nine
FPDs. Usually, retrieval errors from satellite-derived LSTs can be di-
vided into systematic biases and random errors. Previous investigations
have clarified that systematic biases (systematically higher or lower)
hardly influence FPD performances (Duan et al., 2012). Our results
using temporally aggregated LST data (monthly FY-2F LST composites),
by which random errors could be mostly eliminated and only sys-
tematic biases were left, also elucidate that GOT09-dT-t remains the
best FPDs among the nine FPDs.

To test the impact of random errors on FPD performances, we added
a series of random errors to the original SEVIRI LSTs, which were as-
sumed to be error-free. Note that (1) these added random errors follow
the Gaussian distribution, with 0.0 and 1.0K as the associated mean
and standard deviation (STD), respectively; (2) each diurnal cycle was
re-modelled 50 times, obtaining a total of 5550 diurnal cycles fitted
diurnal cycles (111 cycles x 50 = 5550 cycles). Based on these results,
the FPD performances were re-evaluated. Fig. 12 shows RMSE boxplots
corresponding to the investigated FPDs under 24-input and 4-input
schemes. Compared with the previous results (refer to Figs. 6 and 8),
the RMSEs shows in Fig. 12 are greater, which is reasonable because
random errors have been added. Nevertheless, the performance order of
FPDs remain nearly identical as before. These assessments suggest that
the relative performance of the FPDs is insensitive to the LST retrieval
errors (i.e., quality controls).

5.3. On the impacts from seasonality, land cover type, and topographic
characteristic on order of model performance

Previous studies primarily analyzed RMSE’s mean and its spread,
indicating that the identified FPD may not always be the optimal under
various cases. In particular, it remains unclear whether or not factors
including seasonality, land cover type, and topographic characteristic
(here we only consider elevation) significantly influence the perfor-
mance of the models. In order to test the sensitivity of the order of
model performance to these factors, we further investigated FPD per-
formances stratified by seasonality, land cover type, and elevation
(Fig. 13).

The results show that the previously drawn conclusions are still
valid, namely that (1) the GEM-type models perform excellently for in-
situ measurements under 24-input scheme, while (2) the GOT09-type
models are most suitable for the other three cases (Fig. 13). However,
we observe some exceptions in terms of the investigated factors. For
example, the assessments indicate that GEM-n performs better than
GOT09-dT-t during spring (subplot a3), while INAO8-ts is similarly
identified as the best in autumn and winter (subplot a3). When in-
vestigating the dependence on land cover type, GEM-n surpasses
GOTO09-dT-t over the mixed cover type E (subplot b3). GEM-n also
performs best over surfaces with elevations greater than 1200 m (sub-
plots c3 and c4). It is difficult to isolate the specific reason for these
exceptions, but the surface thermal properties (related to land cover
type and soil moisture), synoptic conditions, and errors in measure-
ments or retrievals of LSTs are expected playing important roles alto-
gether on provoking these exceptions.

From these assessments, as well as those in Section 4, it is inferred
that the overall performance of a model is primarily determined by its
performance around sunrise, which is considered in particular in the
design of the GEM- and GOT09-type models. Furthermore, the order of
model performance is fairly insensitive to the factors such as the
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Fig. 2, but for the disturbed MSG-SEVIRI LSTs; (b) same as Fig. 4, but for the disturbed MSG-SEVIRI LSTs.
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Fig. 13. Performance variations of FPDs depending on input dataset and input scheme (see row labelling). The columns show the dependence on season (first
column), land cover type (second column), and elevation (third column). Note that only results for the better/best sub-model among the associated model types are
shown, i.e. GOTO1-ts, INA0O8-ts, GOT09-dT-t, and GEM-n, respectively. For in-situ measurements, the investigated land cover types are tree (A), shrub (B), grass (C),
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Table 5
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Orders of parameter-reduction strategies for each type of DTC model, summaries of the features for each model type, and recommended model(s) under different

cases.

Cases GOTO1 INAO8 GOT09 GEM Recommended model
Case #1 ty > 6T ty > 6T t=t; > 8T o= GEM and GOTO09 types
Case #2 ST = t, t, > 6T t>68T > t o> GOTO9 type
Case #3 ts > 6T ts > 6T ST=1 >t mn=o GOTO09 type
Case #4 ST > & t; > 6T 8T > 7 > ¢ mn>a GOTO09 type
Summary @ simple form @ simple form @ relatively complex form @ complex form GOTO9 type

@ less capability around sunrise ~ @ less capability around sunrise

@ high accuracy

@ suitable for nonstandard and adequate-input
cases

* 8T, ‘ty, ‘7, ‘0’, ‘n1” denote the five PRAs including ‘6T = 0, ‘t; = t;x — 1°, ‘z = 0.01’, ‘0 = 0°, and ‘q; = 0’, respectively. The symbol ¢ >’ means that the left
parameter reduction strategy has a better performance than the one on the right, while the symbol ‘=’ indicates a similar performance.

seasonality, land cover type, and elevation, although the result de-
monstrate that these factors affect the absolute errors of the in-
vestigated FPDs.

5.4. Summaries of selection PRAs and the outlook for DTC models with
different numbers of parameters

Based on the results presented above, we find that the performances
of the FPDs are primarily determined by the original model type and the
loss of accuracy caused by different PRAs; while they are relatively less
impacted by surface regulators such as the season and land cover type.
Therefore, we further provide the orders of the parameter-reduction
strategies for each investigated category of DTC model, the features for
each model type, as well as the recommended model(s) under various
cases (see Table 5). For example, the order ‘6T > 7 > t;’ for the GOT09
model under Case #4 means that the optimal strategy to reduce the
parameter number to four is to set 8T to zero at first and subsequently ¢
to 0.01. Furthermore, the results in Table 5 suggest that the parameter
number can be reduced to three by adding the PRA ‘t, =t — 1.
However, it should be noted that accuracy decreases when only three
free parameters are used.

Moreover, to conduct DTC modeling when only two observations
are available (e.g., between 2000 and 2002, only MODIS observations
from Terra are available), for semi-empirical models, one can further
reduce the parameter number by fixing t,,, as a constant according to the
timing results for different land-cover types obtained by Holmes et al.
(2013) and Good et al. (2017). For quasi-physical models, one can use
an approach similar to that of Watson (2000) and Huang et al. (2014)
by only retaining two parameters, such as thermal inertia (P) and daily
mean LST (Tp).

However, we need to clarify that the errors of the DTC models with
only two free parameters would be probably greater than the FPDs. One
possible solution is to additionally integrate data from other sources.
These data can be the aerosol optical depth (AOD) products provided by
MODIS, which offer potentially useful information for determining z.
The problem of limited daily thermal observations can also be solved by
integrating background diurnal LST dynamics at lower resolutions, such
as the geostationary-satellite-based diurnal dynamics (Sun and Pinker,
2005; Zhou et al., 2013) or land-surface-model-based LST dynamics
(Jin and Dickinson, 1999). Information on land cover types and surface
properties (e.g., NDVI) is also valuable for DTC modeling when limited
diurnal thermal observations are available (Quan et al., 2014). Finally,
due to the similar diurnal variation patterns between LST and air
temperature, the ground-based air temperatures can also be useful for
DTC modeling with limited observations (Bechtel et al., 2014, 2017;
Ignatov and Gutman, 1999; Xue and Cracknell, 1995; Zaksek and
Schroedter-Homscheidt, 2009; Zhu et al., 2017).

Previous performance assessments of FPDs were mainly conducted
under clear-sky conditions. Nevertheless, clouds are prevalent for most
of the earth surfaces especially at low latitudes, which result in invalid
thermal observations of surfaces. Therefore, there is frequently an

inadequate number of LSTs (i.e., less than four) available for FPD
modelling. This dilemma can be solved, as indicated, by either further
fixing some of the parameters of the FPDs or by integrating auxiliary
data such as surface air temperatures and radiation measurements (Jin
and Dickinson, 1999; Lu et al., 2011; Zhang et al., 2015). However,
strictly speaking, the parametric DTC models investigated here are only
valid under clear-sky condition. Therefore, in the presence of frequent
clouds, a feasible solution is to temporally aggregate the clear-sky
MODIS LSTs at each observation daily time over a certain number of
days (e.g., 8 days, a month or a season) to obtain representative clear-
sky LST, as those performed for the FY-2F data in Section 4.4. Though
the modeling of temporally aggregated LSTs cycles does not provide the
LST dynamics of a specific day, it is potentially useful in various ap-
plications focusing on the more slowly varying thermal characteristics
of the land surface rather than individual LSTs, such as the derivation of
the diurnal dynamics of surface UHIs (Zaksek & Ostir, 2012) and tem-
poral upscaling of instantaneous surface evapotranspiration. Finally,
one should be aware that even if four thermal observations per day
(e.g., four MODIS LSTs) were obtained under clear-sky conditions,
clouds may still have occurred at any other time of the diurnal cycle.
Therefore, the corresponding modelled LSTs at these times will not
necessarily reflect actual LSTs. Under this condition, the modelled LSTs
by FPDs would be probably greater for the day while lower for the
night, because daytime clouds can block direct solar radiation while
nighttime clouds can produce atmospheric counter radiation that keep
the surface relatively warmer.

6. Conclusions

Four-parameter DTC models (FPDs) are crucial to various applica-
tions, but until now a systematic comparison among the commonly
used FPDs has not been performed. This study aims at summarizing all
the possible FPDs with different parameter-reduction approaches
(PRAs) and further identifying the FPDs with the highest accuracy
under various cases. Both in-situ and geostationary LST data over ex-
tensive areas under dissimilar bioclimates were used for comparison.

Our findings are as follows: (1) Prediction accuracy within the
period shortly after sunrise determines a large part of the daily mean
modelling accuracy, but it rarely affects the accuracy in the afternoon.
(2) For the GOTO1- type models, PRA ‘6T = 0’ is less accurate than
‘ts = tis — 1’ under 24-input scheme, but slightly better under 4-input
scheme. For the INAO8-type models, PRA ‘6T = 0’ is less accurate than
‘ts = tis — 17, but the first strategy generally yields better results for
GOTO09-type models. (3) The GOT09- and GEM-type models are re-
commended when hourly or more frequent thermal observations are
available. The GEM-type models are only recommended in nonstandard
cases (e.g., the LSTs fluctuate and even increase slightly rise during the
nighttime cooling period), while the GOT09-type models are generally
the optimal option for typical uses. (4) Among the three GOT09-type
models, GOT09-dT-t (for which 8T and ¢ are fixed to zero and 0.01,
respectively) usually performs better than the other two models (i.e.,
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GOTO09-ts-t and GOT09-dT-ts). Therefore, GOT09-dT-t is further iden-
tified as the most suitable option for general use in various applications.
These findings are potentially useful for the retrieval of surface thermal
properties as well as for the generation of spatio-temporally continuous
LSTs that are required for various applications, such as the generation
of surface air temperatures at high resolution, thermal remote sensing
of evapotranspiration, and urban heat islands.
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Appendix A. Performance comparison between using two different parameter-reduction approaches on determining t;

Here, we compare two different parameter-reduction approaches (PRAs) for t;. The two PRAs are provided by the following formula (Duan et al.,

2014b; Holmes et al., 2013):

Iy = P (tss) = t—1
ty = py(tms Ty 8T) = by + wrtarccos[0.5-(1 + 6T-T; Y]

(A1)

where p; and p, represent these two PRAs; t is time of sunset; and t,,, T,, and 8T are the time when LST reaches its maximum, daily LST
amplitude, and temperature difference between T, and T(t— =), respectively. The associated assessments for these two PRAs (see Table A1) show
that p; is less capable than p, only in four of the sixteen cases, including GOT01-ts and INA08-ts under Case #1, GOT09-dT-ts under Case #3 and #4.
For the rest of the listed cases, p; yields a higher accuracy.

Table Al
Performances of the two PRAs given by Eq. (Al). Only four-parameter DTC models (i.e., GOTO01-ts, INA08-ts, GOT09-ts-t, and GOT09-dT-ts) that include
parameter t; are compared.

Case GOTO1-ts INAO8-ts GOTO09-ts-t GOTO09-dT-ts
Case #1 P1 < p2 P1 < P2 P1 > P2 P1 > P2
Case #2 p1 > P2 P1 > P2 P1 > P2 P1 > P2
Case #3 P1 > D2 P1 > P2 D1 =Dz P1 < D2
Case #4 D1 > D2 D1 > P2 D1 > D2 D1 < P2

* Cases #1 to #4 denote the four validation schemes given in Section 3.3.

*k ¢

P1 < po’ indicates that PRA p; is less efficient than p,, while ‘p; > p,’ denotes the opposite.

Appendix B. Formula for calculating M,, and g(t)

For the GEM models mentioned in Section 3.1.3, M, and g(t) are written as follows (Huang et al., 2014):

M, = [nwgP? + 2nwq P-hy + ]2
g(t) = A, cos(nwg—¢,) + B, sin(nws—¢,)
¢, = arctan[P /nag -(N2 ho + P nag) ! (B1)

where n denotes the number of items of the Fourier series (it approaches infinity in theory but it can be set to 10 for simple uses); wq is the angular
velocity of the earth; ¢, is an intermediate function; P denotes the thermal inertia; h; and hg are respectively the linear and constant coefficients of
the upward surface fluxes; and A, and B,, are the Fourier coefficients at the n'™ order, expressed as:

Ay, =@r)t [ f(wqt) cos(nowgt)dwgt
wdtew
B,=Q@n)t [ f(wat)sin(nwgt)dwgt
wdtewW (Bz)

where f{(t) is the solar radiation received by the surface within a diurnal cycle. It is a piecewise function that takes the cosine value of a solar
zenith angle of 0.04 as the dividing point to distinguish the daytime and nighttime periods (Watson, 1975).
The function f(t) is expressed as the following for the daytime period:

f() = (1—a)-Sy-cos Z-x
wat € Waniic = [0, 27] N {cos Z > 0.04} (B3)

where q is the surface albedo; Sy is the solar constant (1367 W/m™2); and Z, k, and Wiy, are the solar zenith angle, atmospheric transmittance,
and the daytime period with solar insolation, respectively. Z and « are calculated using the formula:
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{cosZ = cosdcospcoswyt + sindsing

x = 1-0.2secZ

where § and ¢ are the solar declination and local latitude, respectively.

The function f(t) is expressed as follows for the nighttime period:

{ fo=o0

w3t € Winaded = [0, 27] N {cosZ < 0.04}

where Wghageq is the period without solar radiation.
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