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Abstract: Satellite thermal remote sensing provides land surface temperatures (LST) over extensive
areas that are vital in various applications, but this technique suffers from its sampling style and the
impenetrability of clouds, which frequently generates data gaps. Annual temperature cycle (ATC)
models can fill these gaps and estimate continuous daily LST dynamics from a number of thermal
observations. However, the standard ATC model (termed ATCS) remains incapable of quantifying
the short-term LST variations caused by synoptic conditions. By incorporating in-situ surface air
temperatures (SATs) and satellite-derived normalized difference vegetation indexes (NDVIs), here we
proposed an enhanced ATC model (ATCE) to describe the daily LST fluctuations. With Aqua/MODIS
LST products as validation data, we implemented and tested the ATCE over the Yangtze River
Delta region of China. The results demonstrate that, when compared with the ATCS, the overall
root mean square errors of the ATCE decrease by 1.0 and 0.8 K for the day and night, respectively.
The accuracy improvements vary with land cover types with greater improvements over the forest,
grassland, and built-up areas than over cropland and wetland. The assessments at different time
scales further confirm that LST fluctuations can be better described by the ATCE. Though with
limitations, we consider this new model and its associated parameters hold great potentials in
various applications.

Keywords: thermal remote sensing; land surface temperature; annual temperature cycle;
LST dynamics; MODIS

1. Introduction

Satellite thermal infrared remote sensing allows generating land surface temperature
(LST) products over extensive areas, which are indispensable for various applications [1],
such as the quantification of land-atmosphere interactions [2], investigation of urban thermal
environments [3], identification of forest fires [4], and monitoring of volcanoes [5] and
earthquakes [6]. However, spaceborne thermal sensors, especially for those onboard polar-orbiting
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satellites, typically sample the surface in a temporally discontinuous and even sporadic manner,
which results in regular data gaps. These data gaps may become even more frequent in consideration
of the prevalent occurrence of clouds especially for low-latitude areas.

To estimate temporally continuous LST dynamics, various models have been designed at different
time scales [7–9]. These models can be generally divided into three categories with respect to the
time scale: inter-annual temperature dynamics (ATD) models [8,10,11], inner-annual temperature
cycle (ATC) models [7,12], and diurnal temperature cycle (DTC) models [13–20]. At the yearly
timescale, ATD models primarily aim at analyzing the inter-annual LST variations. The linear function,
Mann-Kendall framework, and Breaks For Additive Seasonal and Trend (BFAST) algorithm, which are
flexible for handling time series of visible and near infrared remote sensing data, have been illustrated
applicable for modeling long time-series LSTs [8,10,11]. At the sub-daily timescale, DTC models
have been the research foci because of their ability to generate temporally continuous LSTs with
very limited thermal observations in a diurnal cycle. A variety of DTC models have therefore
been conceived. According to the amount of using physical laws and auxiliary data, they can
be divided into four categories [19]: the physical methods [13], quasi-physical methods [14,15,19],
semi-physical methods [16,18], and statistical methods [17]. Between the yearly and sub-daily
timescales, ATC models have recently received particular attention due to their potentials in various
applications [7,12]. These applications include the generation of spatio-temporally seamless LST
products [21,22], improvement of the spatio-temporal downscaling of LSTs [23–25], and examination
of surface urban heat islands (SUHIs) [9,26–28].

Similar to those DTC models, the ATC dynamics can as well be modelled either by statistical
time-series analysis methods or semi-physical methods, or by synthetic methods that combine the
statistical and physical methods with/without additional data. From the statistical time-series analysis
perspective, the classic Harmonic ANalysis of Time Series (HANTS) algorithm can be well adapted to
simulate the LST dynamics and then to reconstruct the LST data gaps induced by clouds, though the
reconstructed LSTs are expected to be higher than the true LST under overcast conditions especially
for the daytime [29]. While from the semi-physical perspective, Bechtel [30] presented the modeling
of annual LST variations by a standard sinusoidal function (termed the ATCS hereafter) and later
suggested the use of a second sinusoidal term outside the mid-latitudes [31]. This sinusoidal model
generally performs well on the reconstruction of LST dynamics; and the derived model parameters are
worthwhile for the quantification of surface properties [12,27]. Nevertheless, such a sinusoidal model
is temporally smooth and therefore insensitive to short-term LST variations due to the alteration of
synoptic conditions. To improve the prediction of these short-term LST fluctuations, more advanced
ATC models were consequently proposed by incorporating either statistical methods such as the
Gaussian process regression [9] or auxiliary data such as in-situ measurements [7].

The previous years have witnessed great achievements on ATC modeling, but issues remain.
The time series statistical methods can usually achieve a high accuracy, but their accuracies greatly
depend on the number of LST observations, wherein dense LSTs are typically required to achieve a
robust modeling. By comparison, semi-physical methods such as the ATCS can predict LST variations
within an annual cycle with a relatively limited number of LST observations, because their number of
free parameters is relatively small when compared with those of the statistical methods. The prediction
accuracies of semi-physical methods are, nevertheless, relatively lower, especially for periods with
unstable synoptic conditions. Although the incorporation of statistical processes/functions into
physical methods can handle the LST fluctuations due to synoptic conditions and vegetation phenology,
they become less effective once the number of temporal thermal observations is limited.

To resolve these issues, this study continues to employ the synthetic approach by combining the
ATCS originally proposed by Bechtel [30] with auxiliary remote sensing and in-situ data. In particular,
in-situ surface air temperatures (SATs) were assimilated to explain the short-term LST variations owing
to synoptic conditions. The rest of this paper is organized as follows: Section 2 includes the study area,
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data, and new method proposed, which is then followed by the results and discussion in Section 3;
and the conclusions are finally drawn in Section 4.

2. Materials and Methods

2.1. Study Area and Data

The Yangtze River Delta (YRD) was chosen as the study area (refer to Figure 1) as this region
is characterized by diverse terrains and land cover types and therefore suitable for the test of
ATC modeling. The YRD is located in the middle of the coastline in Eastern China (26.9◦–34.6◦N,
116.8◦–124.2◦E). It mainly consists of Shanghai, the southern Jiangsu Province, and the northern
Zhejiang Province (Figure 1a). Its terrain is comparably flat in the northern regions whereas relatively
rugged in the southern ones (Figure 1b). The YRD is typified by a characteristic subtropical monsoon
climate, usually with hot and humid summers while cold and dry winters. According to the
International Geosphere-Biosphere Programme (IGBP) classification scheme, the main land cover types
in the YRD include forest, grassland, cropland, built-up land, wetland, and water area (Figure 1c).
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Figure 1. Information on the study area (i.e., the Yangtze River Delta, YRD). (a–c) denote the general
location, digital elevation model, and land cover type map, respectively.

The satellite data used in this study are from the Moderate Resolution Imaging Spectroradiometer
(MODIS) collection-5 products generated in four years ranging from 2010 to 2013. Note that the
following results are therefore provided as averages for these four years. They include the daily LST
product MYD11A1 (with the spatial resolution of 1 km), the sixteen-day composite NDVI product
MYD13A2 (1 km), and yearly land cover product MCD12Q1 (500 m), wherein the IGBP classification
scheme was employed. Note that the water bodies were masked because they do not belong to
land surfaces. The resolution of MCD12Q1 was further resampled to 1 km to match that of the LST
products. The transit times of MYD11A1 LSTs are around 13:30 (day) and 1:30 (night) local time per
daily cycle, which closely approximate the moments when daily minimum and maximum LST values
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occur. The MODIS LSTs have been used in various applications and demonstrated with an acceptable
accuracy within 1.0 K [32].

For the MODIS LSTs, more than 60% of the data are invalid due to clouds. The seasonal mean
percentages of clear-sky pixels in the chosen four years are presented in Table 1. The percentages of
clear-sky data in the spring (March, April and May) and autumn (September, October and November)
are generally higher than those in summer (June, July, and August) and winter (January, February and
December). The high cloud coverage in the summer results from the heavy rainfall during this season
over the YRD; while the high percentage in the winter is closely related to increased haze that reduces
valid LST data [27].

Table 1. Seasonal mean percentages (%) of valid LST data over the YRD from 2010 to 2013.

Season Spring Summer Autumn Winter

Day 31.5 17.6 31.1 24.5
Night 31.1 26.6 36.9 23.2

In addition to the satellite data, in-situ SATs from 23 meteorological stations from 2010 to 2013
were used (Figure 1b). They include the daily maximum and minimum measurements on SATs.
These in-situ SATs were further resampled into raster images with the resolution of 1 km by the inverse
distance weighted method, wherein the impacts from surface elevations on SATs were considered [33].

2.2. Method

2.2.1. Standard ATC Model

The ATC model originally proposed by Bechtel [30] uses a single sinusoidal function to describe
the inner-annual LST dynamics (Figure 2a). Its general formula can be written as follows [7,8,12,27,30]:

T(d) = f (T0, A, θ, d) = T0 + A · sin(2πd/N + θ) (1)

where d is the day of the temperature cycle relative to the spring equinox; T0, A, and θ are the annual
mean LST, the ATC amplitude, and the corresponding phase shift relative to the spring equinox,
respectively; and N is the number of days in a year, which is equal to 366 for 2012, while 365 for 2010,
2011 and 2013. This classic ATC model is hereafter termed the standard ATC model (ATCS).
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Figure 2. A demonstration of the standard ATC model (represented by the ATCS) and the observed
continuous daily LST dynamics. LST dynamics and the model predictions are presented for (a) an
entire year and (b) a shorter period ranging from Jun. to Oct. T0, A, and θ are the annual mean
LST, ATC amplitude, and the corresponding phase shift relative to the spring equinox, respectively;
∆Tair denotes the SAT fluctuation; and γ is the ratio between the LST and SAT fluctuations.
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2.2.2. Enhanced ATC Model

Given the simplicity of the ATCS, two predetermined assumptions are required. The first is
that the annual LST dynamics is dominantly controlled by the top-of-atmosphere solar radiation
flux; and the second is that the land surface properties remain unchanged across an annual cycle.
The first assumption can be undermined because LSTs are truly controlled by climatic background
and local synoptic conditions in addition to solar radiation, resulting in short-term LST fluctuations.
The ATCS is therefore not suitable to describe the short-term LST fluctuations induced by the alteration
of synoptic conditions. The second assumption can as well be undermined for areas where alterations
of land surface properties do occur, e.g., as a result of soil moisture variation or vegetation phenology.
For example, the LSTs over dry croplands are anticipated to rise considerably once crops have been
harvested (bare soils are exposed).

To quantify the LST fluctuations due to synoptic conditions, we incorporated in-situ SATs to
represent those variations of the LSTs because of their responses to day-by-day synoptic alterations are
related, though with different magnitudes [34]. In other words, since LST and SAT are linked via the
surface energy balance they simultaneously increase with changing synoptic conditions. To measure
the LST variations caused by vegetation phenology, we moreover assimilated the information on
surface vegetation status (quantified by vegetation index). By these two procedures, we obtained an
enhanced annual temperature cycle model (termed the ATCE hereafter). Its formula is given as follows:

T(d) = T0 + A · sin(2πd/N + θ) + ∆Tair(d) · γ(d) (2)

where the symbol d, T0, A, θ and N equal Equation (1); and ∆Tair(d) and γ(d) are two intermediate
functions that can be calculated by Equations (3) and (4), respectively. More precisely, ∆Tair represents
the SAT fluctuations induced by synoptic conditions when referenced to their standard inter-annual
variations (Figure 2b). ∆Tair is calculated by the following expression:

∆Tair(d) = Tair(d)− f (T0_air, Aair, θair, d) (3)

where Tair(d) is the in-situ daily mean SATs; f (·) is the sinusoidal function given by Equation (1), with its
parameters T0_air, Aair, and θair denoting the annual mean, annual amplitude, and phase shift for the
SATs. Note that the day-to-day variations of the LSTs and SATs are correlated but also depend on the
vegetation cover. We thus added a multiplier function after ∆Tair(d), i.e., γ(d), to transform the SAT
fluctuations into LST ones (Figure 2b). The multiplier function is provided by the following formula:

γ(d) = λ · (Vmax − Vmin)/[V(d)− Vmin + 1] (4)

where λ is the time-independent coefficient on this multiplier; Vmax and Vmin are the annual maximum
and minimum vegetation index values, respectively; and V(d) is the vegetation index at a certain
specific day. Here the normalization of the vegetation index at the specific day (i.e., V(d)) by
incorporating Vmax and Vmin aims at the quantification the temporal differences between the SATs and
LSTs induced by vegetation phenology. From Equation (4), one may infer that the multiplier γ(d) would
decease once the vegetation index at a specific day V(d) increases, which is reasonable because enhanced
evapotranspiration over more vegetated areas usually reduce the difference between the LST and SAT,
i.e., full vegetation cover can indicate little difference between these two temperatures. Note that the
addition of 1.0 just aims at keeping the denominator not equal to zero to avoid unstable solutions.

2.2.3. Solution of the Forward ATCE and Validation Schemes

The formulas of the ATCE as demonstrated by Equations (2) to (4) indicate that this model
possesses four free parameters, including T0, A, θ, and the regulator λ. In other words, at least four
thermal observations are required to obtain the solution of the ATCE, which can be satisfied using
MODIS LSTs (Note that in practice more observations are usually needed to achieve a robust modeling).
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This study directly used the NDVI data to reflect the vegetation status. To achieve a better model
stability and avoid unpredictable factors that may influence the SAT, we calculated the average of
the daily maximum and minimum SATs for each pixel of the spatially interpolated SAT images to
represent the daily mean SAT. For the model validation, the training and test data were split by
days for each pixel: 70% of the valid LSTs across the year were randomly selected as the training
samples to drive the solution of T0, A, θ, and λ; while the remaining 30% of the data were used as for
verifications. The least square method was applied to solve the four free parameters for each pixel;
and the model performances were evaluated by the mean square error (RMSE) between the predicted
and observed LSTs.

3. Results and Discussion

3.1. Overall and Spatial Patterns of Model Performances

The overall performances (represented by the RMSE) as well as the spatial distributions of the
predicted RMSEs for the ATCS and ATCE are provided in Figures 3 and 4 as well as Table 2. In general,
these results demonstrate that the ATCE has a better performance than the ATCS. The mean RMSEs of
the ATCS are 3.8 and 2.8 K in the day and night, respectively (Figure 3a), while those for the ATCE are
2.8 and 2.0 K, indicating an improved accuracy of 1.0 and 0.8 K for the day and night, respectively.
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Figure 3. Performances of the ATCS and ATCE for the day and night. (a) is the boxplot on the predicted
RMSEs; while (b) denotes the probability distribution functions (PDFs) of the associated RMSEs.
∆Tday and ∆Tnight are the accuracy improvements for the ATCE when referenced to the ATCS for the
day and night, respectively. The end of each whisker of the boxplot indicates the highest or lowest
value within 1.5 times of the inter-quartile range (IQR).

For the ATCS, the probability distribution functions (PDFs) on the RMSE given in Figure 3b
illustrate that 61% and 70% of the RMSEs are within 3.0–4.0 K and 2.0–3.0 K for the day and night,
respectively. By comparison, a majority of the RMSEs predicted by the ATCE are well within 2.0–3.0 K
and 1.0–2.0 K for the day and night, respectively. We further observe that the RMSEs for both the ATCS

and ATCE are higher for the day than for the night. This is simply because the LST variations during
the day when the solar insolation is strong are higher [16].
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day (a,b) and the night (c,d).

Table 2. Predicted RMSEs (unit: K) of the ATCS and ATCE for different land cover types. Diff-day and
-night denote the accuracy improvements of the ATCS when referenced to the ATCE.

Land Cover Types ATCS-Day ATCE-Day ATCS-Night ATCE-Night Diff-Day Diff-Night

Grassland 4.0 2.9 2.8 2.0 1.1 0.8
Wetland 3.4 2.7 2.7 2.0 0.7 0.7

Cropland 3.7 2.8 2.9 2.1 0.9 0.8
Built-up 4.0 3.1 2.8 2.0 0.9 0.8
Forest 4.1 2.8 2.9 2.0 1.3 0.9

Further we analysed if the improvement differed by land cover (see Table 2). During the
night, the assessments in terms of different land cover types indicate that the RMSEs by the ATCE,
when compared with the ATCS, decrease by around 0.7 to 0.9 K. Such an improvement indicates
that the performance improvement is rarely related to the land cover type. We however observed
an opposite phenomenon during the day—the model performances greatly depend on the land
cover types:

Notably, the differences in RMSE between the daytime models are greatest for the regions with
higher terrains (i.e., the southern part of the YRD mainly covered by grasslands and forests, refer to
Figure 1), with RMSEs of ATCS exceeding 4.0 K. By comparison, the mean RMSEs for these two
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land cover types when using the ATCE possess the largest decline, with an accuracy improvement of
around 1.1 to 1.3 K. This phenomenon suggests that the incorporation of the NDVI data is particularly
beneficial for improving the ATC modeling in strongly vegetated areas, because vegetation phenology
plays an important role on the local LST fluctuations here.

For the built-up (urban) regions, the RMSEs by the ATCS are as high as those for the forests,
especially for the cities near the Yangtze River and Taihu Lake, with the average RMSE reaching
4.0 K (Table 2). The evaluations interestingly show that the performance of the ATCE is better, but the
accuracy improvement becomes lower (i.e., only 0.9 K), especially when compared with those values
for the forests and grasslands. The comparably high modeling errors for both the ATCS and ATCE in
urban areas are most likely related to additional anomalies of urban LSTs such as the more significant
urban thermal anisotropy effect, as well as the more frequent prevalence of haze over urban areas [32],
which destabilize the normal ATC dynamics. While the relatively smaller improvement of accuracy
is probably due to the use of less accurate urban SATs, as urban SATs can be underestimated based
on the measurements from meteorological stations that are mostly not within urban areas owing to
the urban heat island effect [3]. An improved SAT estimation accounting for the UHI effect, therefore,
might improve further the ATCE model for these areas.

For the cropland and wetland, the assessments also illustrate the ATCE possesses a higher
accuracy when referenced to the ATCS, with the accuracy of improvement of 0.9 and 0.7 K, respectively.
These improvements are as well lower compared with forests, which might be related to their relatively
high soil moisture content, since soil moisture is an additional and crucial factor that regulates the
differences between the LSTs and SATs. Note that more discussions the prospects and limitations of
the ATCE are provided in Section 3.3.

3.2. Temporal Patterns of Model Performances

The aforementioned results primarily assessed the model performances from the spatial
perspective, insights in the temporal performances are provided in Figure 5. To illustrate the daily
comparisons between the model-predicted and observed LSTs, we display the temporally continuous
LST dynamics at a random pixel (Figure 5a). The associated curves suggest that the ATCE reflects the
day-to-day LST fluctuations induced by specific synoptic conditions, mostly by the use of the SATs.
For example, two heat waves occurred between DOY (day of year) 170 to 220 as seen from the SAT
fluctuations; and the predicted LSTs follow similar variations, although with different magnitudes.
We also observe that the predicted LSTs occasionally mismatch the observed values, probably because
of the inaccuracy of the interpolated LSTs and the uncertainties from the original MODIS LSTs. More
analysis on the remaining errors is provided in Section 3.3.

In order to discern the model performances at the monthly scale, we further provide the
monthly/seasonal variations of the RMSEs within an annual cycle (Figure 5b). These assessments
suggest that the RMSEs by the ATCS fluctuate greatly during the year, with the higher values occurring
in spring and winter than in the other two seasons. By comparison, the RMSEs by the ATCE are higher
in the summer than in the other seasons. The accuracy improvements are larger in the spring and
winter than those in the summer and autumn. For instance, the mean accuracy improvement for
the period from July to September is only 0.2 K, while the mean improvement is 1.5 K for December,
January, February, and March. Detailed examinations by checking the temporal distributions of the
available valid LSTs and the temporal RMSE variations (refer to Table 1 and Figure 5b) reveal that
the accuracy of the ATCE is only slightly better than that of the ATCS during the period when there
are abundant valid LSTs (from July to September), while it is significantly better than its counterpart
when data gaps frequently occur (around winter). During the nighttime, the performances of both the
ATCS and ATCE are relatively stable. The ATCE performs better than the ATCS in all months except for
November and February (Figure 5b). The decreased accuracies for the ATCE in the two months around
the winter are speculated attributable to the over-addition of LST fluctuations, because nighttime LSTs
are relatively less correlated to the vegetation status.
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Figure 5. Model performances at different time scales. (a) denotes the daily comparisons between
the ATCE-predicted and observed LSTs at a selected pixel; (b,c) show the model performances at the
monthly scale and a series of time scales ranging from 1 to 32 days, respectively.

To further evaluate the model performances at different time scales, this study presents the
comparison of the associated RMSE variations for these two models based on temporally aggregated
LSTs (e.g., 8-day composite LSTs) in addition to the original daily LSTs. The aggregation period ranges
from 1 to 32 days (Figure 5c). The results illustrate that the model performances increase with the
aggregation duration. This phenomenon is reasonable because the impacts from the factors that distort
the normal dynamics, such as the synoptic condition and surface thermal anisotropy effect, diminish
as the aggregation duration enlarges. In detail, the RMSEs by the ATCS and ATCE in the day are 3.7
and 2.7 K respectively at the daily scale, while they decrease to 2.4 and 1.6 K once the aggregation
duration is 32 days. By comparison, the accuracy improvements (represented by the RMSE) by these
two models are between 0.5 and 1.0 K when the aggregation duration increases from 1 to 32 days.

3.3. Prospects and Limitations

By considering the LST fluctuations due to the synoptic conditions and local vegetation phenology,
the preceding results show that this study improved the ATC modeling. The ATCE inherits the
design philosophy of the ATCS attempting to model the annual LST dynamics with very limited
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controlling parameters. Though the accuracy for the LST reconstruction may not be necessarily
better than the statistical methods that are based on direct or implicit spatio-temporal interpolations,
the feature of using very limited free parameters is potentially beneficial. For example, by the ATCE,
the reconstruction of daily LSTs only with Landsat-derived LSTs becomes possible [9], because there
likely are at least four valid (clear-sky) Landsat thermal observations across a year. In addition,
when compared with the pure statistical/interpolation methods, the physical meanings of the resolved
controlling parameters (e.g., T0, A, θ, and λ) are explicit and clear. This gives rise to their potentials in
various applications such as the monitoring of SUHI, as those that have been done for the parameters
of the ATCS [26,27], and the estimation of SATs from remotely sensed LST observations [35,36].

Besides, the ATCE, to some extent, inherits the thought of the spatio-temporal interpolation
method, by the incorporation of the easily accessible auxiliary data obtained simultaneously with the
thermal data (e.g., in-situ SATs), which are valuable for the ATC modeling. This explains the improved
prediction accuracy when compared with the ATCS. We however acknowledge that limitations remain
for the current ATCE on the following aspects. First, the time difference of LSTs among transits on
different days and surface thermal anisotropy effect [37–39] remain unconsidered, which may be the
culprits of the low prediction accuracy especially for the urban areas. Second, the spatial interpolation
of SATs with only limited in-situ SATs (i.e., 23 for this study) is far from accurate because SATs are
impacted by the other local effect in addition to the elevation, though with a lower heterogeneity than
the LSTs. Third, the vegetation status (represented by the NDVI in this study) is not the only surface
factor that determines the LST-SAT differences. Surface characteristics such as the soil moisture are
also expected to contribute to these differences. The consideration of these three aspects is anticipated
to further improve the ATC modeling. We finally have to note that the improved ATC model is only
valid for more or less cloud free conditions.

4. Conclusions

In terms of the LST fluctuations induced by the synoptic conditions and vegetation phenology,
this study enhanced the standard sinusoidal ATC model (ATCS) by incorporating in-situ surface air
temperatures (SATs) measured at meteorological stations as well as the NDVI data. The proposed
enhanced ATC model (ATCE) has four free parameters and the assessments over the Yangtze River
Delta (YRD) demonstrate that it improves the ATC modeling effectively. When compared with the
ATCS, the overall RMSE of the enhanced model decreases about 0.9 K, with the accuracy improvement
during the day greater than that for the night. The accuracy improvement nevertheless is related to
the land cover types, with the highest improvement occurring over the built-up areas, grasslands,
and forests. Further evaluations reveal that the improvement is valid at different time scales ranging
from the daily to monthly aggregations. We finally discussed the remaining limitations of ATCE that
could become the research foci of future investigations. We consider this approach useful for the
generation of better aggregated LST products as well as the quantification of land surface properties
that are potentially valuable in related applications.
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