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A B S T R A C T

Annual temperature cycle (ATC) models enable the multi-timescale analysis of land surface temperature (LST)
dynamics and are therefore valuable for various applications. However, the currently available ATC models
focus either on prediction accuracy or on generalization ability and a flexible ATC modelling framework for
different numbers of thermal observations is lacking. Here, we propose a hybrid ATC model (ATCH) that con-
siders both prediction accuracy and generalization ability; our approach combines multiple harmonics with a
linear function of LST-related factors, including surface air temperature (SAT), NDVI, albedo, soil moisture, and
relative humidity. Based on the proposed ATCH, various parameter-reduction approaches (PRAs) are designed to
provide model derivatives which can be adapted to different scenarios. Using Terra/MODIS daily LST products
as evaluation data, the ATCH is compared with the original sinusoidal ATC model (termed the ATCO) and its
variants, and with two frequently-used gap-filling methods (Regression Kriging Interpolation (RKI) and the
Remotely Sensed DAily land Surface Temperature reconstruction (RSDAST)), under clear-sky conditions. In
addition, under overcast conditions, the LSTs generated by ATCH are directly compared with in-situ LST mea-
surements. The comparisons demonstrate that the ATCH increases the prediction accuracy and the overall RMSE
is reduced by 1.8 and 0.7 K when compared with the ATCO during daytime and nighttime, respectively.
Moreover, the ATCH shows better generalization ability than the RKI and behaves better than the RSDAST when
the LST gap size is spatially large and/or temporally long. By employing LST-related controls (e.g., the SAT and
relative humidity) under overcast conditions, the ATCH can better predict the LSTs under clouds than ap-
proaches that only adopt clear-sky information as model inputs. Further attribution analysis implies that in-
corporating a sinusoidal function (ASF), the SAT, NDVI, and other LST-related factors, provides respective
contributions of around 16%, 40%, 15%, and 30% to the improved accuracy. Our analysis is potentially useful
for designing PRAs for various practical needs, by reducing the smallest contribution factor each time. We
conclude that the ATCH is valuable for further improving the quality of LST products and can potentially en-
hance the time series analysis of land surfaces and other applications.

1. Introduction

Land surface temperatures (LSTs) derived from satellite thermal
remote sensing are vital for investigating global and regional climate
change, carbon-hydrological cycles, and surface-atmosphere interac-
tions (Jin et al., 2005; Weng, 2009; Kleidon and Renner, 2013; Kalma

et al., 2008). However, more than one-half of the satellite-derived LST
data are missing due to the global prevalence of clouds (Sun et al.,
2017), which has greatly limited the applications of LSTs. Previous
research has attempted to produce spatio-temporally seamless LSTs,
which can be grouped into two main categories: data- and model-driven
methods (Crosson et al., 2012; Xu and Shen, 2013). In general, data-
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driven methods concentrate more on the use of the auxiliary data,
whereas model-driven methods rely more on the incorporation of
physical models that describe the spatio-temporal variations of LSTs.
There is no clear boundary between these two categories of methods,
despite the different strategies used: Some of the data-driven methods
may incorporate simple physical models of LST variations (Ke et al.,
2013), whereas model-driven methods occasionally require various
auxiliary data (Zou et al., 2018).
Data-driven methods may use either auxiliary data from the same or

different satellite sensors (Crosson et al., 2012; Hengl et al., 2012).
They commonly call for the investigation of the statistical relationships
between LSTs and auxiliary data (e.g., vegetation index, precipitation,
terrain, and soil moisture) (Fan et al., 2014). In other words, they
usually do not require a deep understanding of the LST dynamics and
their performances; thus, they are critically dependent on the quality
and quantity of the auxiliary data used. Model-driven methods, by
contrast, rely more on the use of physical (or sometimes statistical)
models that describe the temporal/spatial variations of LSTs (Bechtel,
2011; Fu and Weng, 2018; Ke et al., 2013; Sun et al., 2017; Pede and
Mountrakis, 2018). Typical spatial models include inverse distance
weighting (Liu et al., 2017), gradient plus inverse distance squared
(Zhou et al., 2012), and Kriging and its variants (Hengl et al., 2012;
Lyon et al., 2010). Studies have shown that these spatial models are
usually good at filling discontinuous LSTs with spatially small and
temporally short gaps (Liu et al., 2017; Pede and Mountrakis, 2018). By
comparison, temporal models are regularly formulated at different
timescales; they include the inter-annual temperature dynamics (ATD)
model (Fu and Weng, 2016), intra-annual temperature cycle (ATC)
model (Bechtel, 2011; Xu and Shen, 2013), and the diurnal temperature
cycle (DTC) model (Duan et al., 2012). When compared with the spatial
models, the temporal models are structurally better at filling dis-
continuous LSTs with spatially large and temporally long gaps and
therefore they play a unique role in the gap-filling of LSTs (Liu et al.,
2017).
As one among various temporal models, ATC models enable a

continuous description of the LST cycle on an annual scale (Bechtel and
Sismanidis, 2017; Fu and Weng, 2018). ATC models have been shown
to be valuable in various applications such as the generation of daily
LSTs (Fu and Weng, 2016), downscaling of LSTs (Zhan et al., 2016;
Sismanidis et al., 2017), characterization of local climate zones
(Bechtel, 2011), and monitoring of surface urban heat islands (Huang
et al., 2016; Quan et al., 2016). The currently available ATC models can
be divided into three groups. The first group uses a series of sinusoidal
(harmonic) functions to simulate annual LST dynamics, such as the
Harmonic ANalysis of Time Series (HANTS) (Xu and Shen, 2013). The
HANTS can characterize LST dynamics and reconstruct LST data gaps
with a generally high accuracy, although with a relatively complex
form. The second group uses very few (only one or two) sinusoidal
functions to characterize annual LST dynamics. For example, Bechtel
(2011) proposed the use of a single sine function to model annual LST
variations (henceforth termed the ATCO) and later suggested the use of
two sine functions (henceforth termed the ATCT) for improved mod-
elling (Bechtel and Sismanidis, 2017). These concise ATC models have a
distinct physical basis and therefore they have an excellent general-
ization ability,1 although their performances may be slightly lower. The
abovementioned two groups of ATC models are temporally smooth, and
they do not include terms that extract short-term LST fluctuations re-
sponding to weather and surface changes. To capture such short-term
LST fluctuations, the third group of ATC models incorporate either
statistical processes such as Gaussian process regression (Fu and Weng,
2016), or additional data such as in-situ surface air temperature and

vegetation index (Zou et al., 2018). Generally, concise models such as
the ATCO typically have better generalization abilities due to the lim-
ited number of parameters, but their accuracy is relatively low. Models
with relatively more sophisticated forms (e.g., the HANTS) have a
higher accuracy, but their generalization abilities are relatively low due
to the large number of parameters. In other words, although great
progress has been made, the existing ATC models were developed to
focus either on prediction accuracy or model efficiency. Consequently,
a flexible ATC framework that simultaneously considers the prediction
and generalization ability and that provides options for users under
various practical needs is lacking.
In response to this challenge, this study aims to propose a flexible

ATC framework, based on which we propose a hybrid ATC model with a
balance between prediction accuracy and generalization ability.
Specifically, we combine multiple harmonics with a linear function of
LST-related factors to obtain a flexible ATC framework, specify the
number of harmonic function and LST-related factors to balance model
prediction accuracy and generalization ability, design various para-
meter-reduction approaches (PRAs) to provide model derivatives which
can adapted to different scenarios, and evaluate the hybrid ATC model
under clear and all-weather conditions. We consider that this hybrid
model provides a better description of annual LST dynamics when
temporally discontinuous LSTs are used as inputs, and it is therefore
potentially helpful for improving LST products as well as for the asso-
ciated applications.

2. Study area and data

2.1. Study area

Mainland China (67.9°E – 136.5°E, 15.3°N – 54.6°N) was selected as
the study area (Fig. 1). China has a vast territory, wherein complex
geological environments and climatic conditions have resulted in di-
verse land cover conditions. This diversity makes mainland China an
ideal place to test model performances at a regional/continental scale.
Note that in Fig. 1 we have masked the water bodies, which are not land
surfaces.

2.2. Data

2.2.1. Satellite data
The satellite data used in 2012 include the Moderate Resolution

Imaging Spectroradiometer (MODIS) daily LST product MOD11A1
(onboard Terra satellite), 16-day normalized difference vegetation
index (NDVI) product MOD13A2 (onboard Terra satellite), MODIS 16-
day global albedo product MCD43A3, and MODIS yearly land cover
product MCD12Q1. These satellite data can be acquired from the NASA
Earth Science Data (https://ladsweb.modaps.eosdis.nasa.gov/). Both
daytime (∼10:30 am) and nighttime (∼22:30 pm) LSTs from
MOD11A1 were used; 19 MODIS tiles covering mainland China were
used, and a sub-image with 4042×4841 pixels was then extracted to
match the extent of mainland China. The resolutions of the MCD43A3
(0.5 km) and MCD12Q1 (0.5 km) were both resampled to 1 km to match
that of the LST product. Detailed information on the satellite data are
presented in Table 1.

2.2.2. Meteorological data and surface measurements
Daily maximum and minimum surface air temperatures (SATs) from

2479 meteorological stations (http://data.cma.cn/site/index.html, see
Fig. 1 for their locations) were used (Table 2). The SATs were resampled
into raster images with a resolution of 1 km, using the IDW method, to
match the LST data (Zou et al., 2018). At the pixel scale, we calculated
the daily mean SATs with the daily maximum and minimum SAT
images interpolated based on the in-situ measurements. Note that the
daily mean SATs at those pixels wherein stations are located were de-
signated directly using the corresponding available in-situ SATs. In

1 Here, the model generalization ability is defined as the adaptation capability
of a developed method for use with new input data or patterns (Schmidt and
Bandar, 1998).
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addition, the 0.25° relative humidity (RH) and soil moisture (SM) per 3-
h, simulated with the common Global Land Data Assimilation System
(GLDAS) in 2012 was included (see Table 2 for detailed information).
Both datasets were obtained from the Goddard Earth Sciences Data and
Information Services Center (GES DISC) (https://disc.sci.gsfc.nasa.gov/
datasets/). The RH and SM data were also resampled to 1 km. Note that
only the RH and SM data from around the time of overpass of the Terra
satellite were used.
Surface Radiation Budget Network (SURFRAD) ground measure-

ments were also used (https://www.esrl.noaa.gov/gmd/grad/surfrad/
overview.html). Due to the high quality of the surface measurements,
the SURFRAD has been widely used for validating satellite-derived LSTs
(Li et al., 2014; Zeng et al., 2018). The SURFRAD provides surface ra-
diation and meteorological observations every 1min in 2012. We fol-
lowed the procedures of Zeng et al. (2018) to convert surface radiation
to LST. Finally, the in-situ LST data from the seven sites of the SURFRAD
were used to evaluate model performances under all-weather condi-
tions. The surface types at the seven sites are mostly cropland, grassland
and desert (Table 3).

3. Methodology

This section provides a complete technical description of the ATC
modelling framework that is able to balance prediction accuracy and
generalization ability. A full list of mathematical symbols and their

Fig. 1. Geolocation of the meteorological sites, land cover types and climate zones across mainland China. Ten climate zones (C01 to C10) were classified according
to topographic and climatic characteristics (Zheng et al., 2010).

Table 1
Details of the Satellite data used in this study.

Variable Product Number of tiles Temporal/spatial resolution

LST MOD11A1 19×366×2 Daily/1 km
NDVI MOD13A2 19×23 16-day/1 km
Albedo MCD43A3 19×23 16-day/0.5 km
Land cover MCD12Q1 19×1 yearly/0.5 km

Note that there are ‘19 tiles over Mainland China× 366 day×2 transits/day’
of LST images in total.

Table 2
Detailed information on the meteorological data and surface measurements
used in this study.

Abbreviation Product Source Temporal/spatial
resolution

SAT — Meteorological stations Daily/—
RH Noah-LSM GLDAS 3-h/0.25°
SM Noah-LSM GLDAS 3-h/0.25°
GST — SURFRAD stations 1-min/—

Henceforth, SAT, RH, SM and GST respectively represent surface air tempera-
ture, relative humidity, soil moisture and ground surface temperature.

Table 3
Details of the seven sites chosen from the SURFRAD network.

Station Lat./Long. (°) Corresponding MODIS tile Altitude (m) Land cover type

Bondville (BON) 40.05/−88.37 h11v04 213 Cropland
Boulder (BCO) 40.13/−105.24 h09v04 1689 Grassland
Fort Peck (FPK) 48.31/−105.10 h11v04 634 Grassland
Goodwin Creek (GWN) 34.25/−89.87 h10v05 98 Grassland
Penn State (PST) 40.72/−77.93 h12v04 376 Cropland
Sioux Falls (SXF) 40.73/−96.62 h11v04 473 Grassland
Desert Rock (DRA) 36.63/−116.02 h08v05 1007 Desert
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meanings is provided in Table 4 in advance to help readers better un-
derstand the associated equations given as below.

3.1. Improving the accuracy of ATC modeling by disregarding
generalization ability

From the perspective of remote sensing, a single sinusoidal function
was proposed to model annual LST dynamics (Bechtel, 2011):

= = + +T t T A t T A t( ) ( , , , ) ·sin( )s 0 0 (1)

Here, Ts(t) is the daily LSTs within an annual cycle; t is the day
relative to the spring equinox; φ denotes the function between Ts and t;
T0, A, and θ are respectively the annual mean, amplitude, and phase
shift of the annual LST cycle; and ω is a constant calculated by 2π∙d−1,
where d represents the number of days in an annual cycle (e.g., d=366
for 2012).
The ATC model given by Eq. (1) only considers the primary com-

ponent (e.g., the incoming solar radiation) of the annual LST dynamics:
i.e., it is unable to characterize fully the subordinate components of the
LST variations within an annual cycle (Bechtel, 2011; Quan et al.,
2016). To model both the primary and subordinate components of the
LST dynamics, an increased number of harmonic are needed (Bechtel
and Sismanidis, 2017; Xu and Shen, 2013). Elaborate explanations of
the assumption in terms of the number of harmonic are provided in
Appendix A. With an adequate number of harmonics incorporated, the
annual LST dynamics can consequently be expressed by the following
formula:

=

= + +
=
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Here, φ1 denotes the revised function between Ts and t; N represents
the number of harmonics used; a1 and b1 are the coefficients for the
primary component of the annual LST dynamics; and an and bn (n > 1)
are the coefficients of the subordinate components.
The ATC model given by Eq. (2), in theory, can fully characterize all

the components of variation (i.e., from the yearly to daily timescale) of

the LST dynamics within an annual cycle when N approaches the
number of days in a year (Brooks et al., 2012). However, the modeling
of high-frequency LST variations (e.g., at the weekly/daily timescale)
would involve a very large number of harmonics, which would there-
fore probably render the associated ATC model unstable. To formulate
an ATC model that is sufficiently stable as well as capable of re-
presenting short-term LST fluctuations, the incorporation of ancillary
data related to the LST variations is one option for improving the re-
presentation (Fu and Weng, 2018). Several studies have shown that
information on the surface status (e.g., the NDVI) and on meteor-
ological conditions (e.g., the in-situ SATs) are both valuable to help
estimate the LST fluctuations due to the surface alterations and weather
fluctuations, respectively (Zou et al., 2018). The detailed explanations
on this model formation are also provided in Appendix A. With such
ancillary data incorporated, the ATC model given by Eq. (2) can be
reformulated as follows:

= +
= + + +=

T t T a a b b t k t
T a n t b n t t k T t

( ) ( , , , , , , , , ) ( , )
( sin cos ) ( )· · ( )

n n

n
N

n n

s 1 0 1 1

0 1 air (3)

Here, γ(t) denotes the NDVI at time t; k is a multiplier that helps
modulate the ΔTair(t), which represents the difference between the daily
mean SAT and fitted LSTs predicted using Eq. (1); ψ denotes the func-
tion between γ·ΔTair and t. ΔTair(t) is calculated as Eq. (4). The ΔTair can
be used to help characterize the LST variations because the differences
between observed and modeled SATs are similar to those in the LSTs
(Good, 2016; Good et al., 2017) (refer to Appendix A).

=T t T t T A t( ) ( ) ( , , , )air air 0_air air air (4)

where Tair(t) is the daily mean SATs, which is estimated as the mean
between the daily maximum and minimum in-situ SATs; φ(∙) is the
single sinusoidal function given by Eq. (1), with parameters T0_air, Aair,
and θair respectively representing the annual mean, amplitude, and
phase shift of the annual SAT cycle.
Nevertheless, the use of the NDVI and a multiplier is insufficient to

capture fully the daily LST-SAT differences (i.e., ΔTair), because various
additional meteorological and surface conditions are as well as able to
influence ΔTair (Lin et al., 2016), such as the soil moisture and relative

Table 4
List of abbreviations used in Eqs. (1)–(6).

Abbreviations Description

Ts The daily mean LST within an annual cycle
Tair The daily mean SAT within an annual cycle
T0 The annual mean of the annual LST cycle
T0_air The annual mean of the annual SAT cycle
A The amplitude of the annual LST cycle
Aair The amplitude of the annual SAT cycle
θ The phase shift of the annual LST cycle
θair The phase shift of the annual SAT cycle
ΔTair The day-to-day difference between the daily mean observed and predicted SAT by Eq. (4)
t The day relative to the spring equinox
d The number of days in an annual cycle, e.g., d=366 for 2012
ω The constant calculated as 2π∙d−1

a1, b1 The coefficients for the sine and cosine function, respectively, and they represent the primary component of the annual LST dynamics
an, bn (n > 1) The coefficients for the sine and cosine function, respectively, and they represent the subordinate component of the annual LST dynamics
φ The function of Ts (i.e., daily mean LST) using t (i.e., the day relative to the spring equinox) as the variable
φ1 The revised function of Ts using t as the variable
ψ The function of ΔTair using t as the variable
γm The incorporated meteorological and surface factors in the proposed ATC modeling framework
km The associated multiplier of the incorporated meteorological and surface factors
M The number of incorporated meteorological and surface factors
N The number of the used harmonics
γ (γ1, γ2, γ3, γ4) The vector composed of the incorporated controls in the ATC modelling framework, including the daily NDVI, soil moisture, albedo, and relative humidity
k (k1, k2, k3, k4) The vector composed of the associated multipliers of the incorporated controls in the ATC modelling framework
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humidity (Kloog et al., 2014; Good, 2016) (refer to Appendix A). By
incorporating more of such controls, herein we define a flexible ATC
modeling framework (ATCF), which is expressed as:

= +
= + +

+ + +
=
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Here, M represents the number of incorporated meteorological and
surface factors; km and γm are the incorporated control and its asso-
ciated multiplier; and ψ1 denotes the revised function between γ·ΔTair
and t. From Eq. (5), one can infer that the number of parameters is
1+ 2N+M, indicating that at minimum LST observations of such a
number are needed to solve the ATCF. The ATCF can potentially
achieve a high degree of accuracy when the number of LST observations
used as inputs is sufficiently large (substantially larger than
1+ 2N+M). However, the addition of more parameters results in a
greater chance of over-fitting the problem and increasing the model
complexity (Brooks et al., 2012), and in addition the number of LST
observations within an annual cycle may be limited in practice
(Wongsai et al., 2017). Hence, the ATCF should be simplified for
practical use and the modeling of LST dynamics should consider both
the prediction accuracy and the generalization ability.

3.2. Achieving a compromise in ATC modeling: balancing prediction
accuracy and generalization ability

3.2.1. Model formation
To balance the prediction accuracy and generalization ability, two

issues should be considered: First, the number of harmonic functions in
the ATCF needs to be constrained to maintain the generalization ability
and to avoid the over-fitting problem, especially where data gaps are
frequent (Brooks et al., 2012). In this study, we assigned the number of
harmonics (i.e., N) to two (Fu and Weng, 2015; Bechtel and Sismanidis,
2017). Second, the number of the ΔTair-related controls (i.e., M) should
also be constrained. Besides the SAT, four commonly used controls
(M=4) were selected; they comprise the surface features NDVI, SM,
and ALB, and the meteorological variable RH. We chose these controls
because they are all closely related to the surface energy fluxes and
therefore they regulate the ΔTair, as demonstrated in previous studies
(Lin et al., 2016; Zhang et al., 2016; Benali et al., 2012). We are aware
that additional factors may control the ΔTair, such as the impervious
surface fraction, precipitation and wind velocity. Nevertheless, these
factors either are already closely related to the four selected controls (Li
et al., 2018b; Nojarov, 2012; Zhang et al., 2016), or they are relatively
difficult to obtain in practice (Benali et al., 2012). Based on the
abovementioned settings and the ATCF given by Eq. (5), we derived a

hybrid ATC model (hereafter termed the ATCH), expressed as follows:

= + + +
= =

= k
k

T t T a n t b n t T t
k k k k

( ) ( sin cos ) · ( )
( , , , ); ( , , , )

n n n
T

s 0 1
2

air

1 2 3 4 1 2 3 4 (6)

Here, γ1 to γ4 are respectively the daily NDVI, soil moisture, albedo,
and relative humidity; and k1 to k4 are the associated multipliers. As
expressed in Eq. (6), there are nine free parameters for the ATCH (T0,
a1, a2, b1, b2, k1, k2, k3, and k4), indicating that at least nine LST ob-
servations are required to solve the ATCH.
The following issues are noteworthy: First, the parameter number of

the ATCH can still be too large for annual modeling with LSTs from
polar-orbiting satellites that have a relatively narrow swath (e.g.,
Landsat observations). Further parameter-reduction approaches (PRAs)
are therefore required to fit the modeling of such types of LST data.
Further discussion of the possible PRAs based on the ATCH is provided
in Section 5.1. Second, in principle, we can reduce the number of
parameters of the ATCH from nine to eight, and even to three, in de-
creasing order, which results in six ATCH-based derivatives. These
ATCH derivatives can be perceived as generalizations of several pre-
vious ATC models. For example, the ATCH approximates the ATCT
given in Bechtel and Sismanidis (2017) once the parameters k1 to k4 are
set as zero; it approaches the ATCE proposed by Zou et al. (2018) when
a2, b2, k2, k3, and k4 are set to zero; and it becomes equal to the ATCO
when all the parameters except T0, a1, and b1 are set to zero. The dif-
ferences between the aforementioned ATC models are provided in
Appendix A.

3.2.2. Solution strategy
The nonlinear least square method was used to solve the free

parameters of the ATCH. The initial values of the free parameters (in-
cluding T0, a1, a2, b1, b2, k1, k2, k3, and k4) were obtained using the first
optimization software (1stOpt) due to its flexibility in determining in-
itial values for nonlinear regression (Lin, 2011). In total, we selected
2479 MODIS pixels that cover sufficient varieties of land cover type and
background climate. For each selected pixel with the 1stOpt, we applied
an independent nonlinear regression to all the valid LSTs within an
annual cycle in order to solve the free parameters. We then calculated
the means of the resolved free parameters values derived from all the
selected pixels as the initial values. Similarly, we employed the maxima
and minima from all the selected pixels as the upper and lower bounds,
respectively. After these procedures, the initial values of T0, a1, a2, b1,
b2, k1, k2, k3, and k4 were set as 293.1, 25.5, 3.6, 2.8, −3.1, 1.3, 0.2,
−0.2, and 2.1, respectively, and parts of these initial values are com-
parable to those given by Bechtel (2012). Note that the nonlinear re-
gression was subsequently conducted using Python 3.4, rather than
directly based on the 1stOpt, mostly because of the difficulty in image

Fig. 2. Illustration of the three strate-
gies used for evaluating the ATCH with
MOD11A1 LSTs and in-situ LSTs.
Strategy #1 compares the ATCH with
ATCO, ATCT, and ATCE using the
MOD11A1 LSTs. In Strategy #2, 24 data
gaps were preset for each selected
image to assist the evaluation. The ac-
ronyms RKI and RSDAST represent the
Regression Kriging Interpolation (RKI)
method (Ke et al., 2013) and the Re-
motely Sensed DAily land Surface
Temperature reconstruction (RSDAST)
method (Sun et al., 2017), respectively.
Strategy #3 compares the results pre-
dicted by the ATCH (ATCH-predicted
LSTs) with the in-situ LSTs under all
weather conditions (i.e., including
clear-sky and overcast).
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batch processing for the latter tool. For each pixel, the aforementioned
initial values, along with the valid LST observations as well as their
associated DOYs within an annual cycle, were used to help solve the
parameters of the ATCH using the least square method, with which the
LST gaps were reconstructed.

3.3. Evaluation strategies

Three strategies were employed to evaluate the performance of the
ATCH under clear-sky and all-weather conditions (Fig. 2). For clear-sky
conditions, the performance of the ATCH was compared with other
frequently-used ATC models (Strategy #1) and two gap-filling methods
(Strategy #2). For all weather conditions (i.e., clear-sky and overcast
conditions), the LSTs modelled by the ATCH were evaluated using the
original in-situ LST data (Strategy #3).

Strategy #1: This strategy first compared the ATCH with the ATCO
from both the spatial and temporal perspectives (see Section 4.1). To
further compare the ATCH with all its possible derivatives, including
the ATCT (Bechtel and Sismanidis, 2017) and ATCE (Zou et al., 2018),
we quantified the contributions of several individual procedures to the
improvement in accuracy with reference to the ATCO (see Section
4.1.2), using the attribution approach of Murray and Conner (2009).
These procedures include the incorporation of additional harmonic
functions (see ATCT), SAT and NDVI (see ATCE), SM, ALB, and RH.
Comparisons using this strategy were conducted for all the available
MOD11A1 LSTs over mainland China.

Strategy #2: The second strategy compared the ATCH with two re-
cently proposed gap-filling methods, i.e., Regression Kriging
Interpolation (RKI) (Ke et al., 2013) and Remotely Sensed DAily land
Surface Temperature reconstruction (RSDAST) (Sun et al., 2017). We
selected RKI and RSDAST as reference methods because they respec-
tively represent spatial and spatio-temporal gap-filling methods. The
comparisons were conducted over 10 selected days in 2012 (every
30 days starting from January 1, 2012), with the LST images derived
from the MOD11A1 product. We chose the pixel in Row 2000 and
Column 2000 of the MOD11A1 product over mainland China, and
further employed it as the upper left corner to create 24 square data
gaps on each LST image for the 10 selected days. These data gaps were
labelled as the G01 to G24, with varying sizes including 1× 1, 2×2,
3× 3, 4× 4, 5×5, 6×6, 7× 7, 8×8, 9×9, 10×10, 20×20,
30×30, 40×40, 50×50, 60×60, 70×70, 80×80, 90×90,
100×100, 200× 200, 300×300, 400× 400, 500×500, and
600×600 pixels, respectively. We performed the same operation for
all the selected 10 days of satellite images. The predicted LSTs over the
data gaps using the ATCH or those gap-filling methods were then
compared with the original LST values, based on which model perfor-
mances were finally assessed.

Strategy #3: The third strategy applied the ATCH to in-situ LSTs from
SURFRAD sites. The in-situ clear and overcast LSTs were identified by
the MODIS pixels corresponding to the SURFRAD sites: i.e., we defined
an overcast pixel as one in which the MODIS pixel was invalid data. The
ATCH-predicted results were then compared with the in-situ LSTs under
clear-sky, overcast, and all-weather conditions.
The absolute root mean-square error (RMSE) between the model

predicted and observed LSTs was used to evaluate model performances.
Specifically, we computed the RMSE difference between two methods
(termed Drmse) to further evaluate the model performances from the
spatial perspective in Strategy #1.

4. Results

4.1. Strategy #1: evaluation with previous ATC models

4.1.1. Spatial and temporal patterns of ATCH performance
The spatial patterns of the performances of the ATCH and ATCO as

well as their differences (given by Drmse) over mainland China is

illustrated in Fig. 3. Here, we mainly focus on the ATCH and ATCO;
further details in terms of the ATCE and ATCT are presented in Section
4.1.2. The results show that the regional mean RMSEs for the ATCH
during daytime and nighttime are 3.4 and 2.8 K, respectively, which are
both significantly lower than those for the ATCO (i.e., 5.2 and 3.5 K
during daytime and nighttime, respectively). These results also de-
monstrate that the RMSEs for both the ATCH and ATCO are higher in
daytime than at nighttime, which is simply because the day-to-day LST
variations during daytime are greater (Zou et al., 2018). The RMSEs of
both the ATCH and ATCO are slightly lower in eastern and southeastern
China than those in other areas, which may be because of the vegeta-
tion cover - since bare soil and low-density vegetation result in high LST
fluctuations, while dense vegetation results in greater transpiration and
cools the surface (Lin et al., 2016). In addition, LST and SAT are often
well coupled over areas with densely vegetated canopies (Good, 2016)
and with high soil moisture content (Mildrexler et al., 2011). Ad-
ditionally, the ATCO shows slightly lower accuracies during daytime
and nighttime in parts of the Qinghai-Tibet Plateau. This may be be-
cause LSTs in these mountainous regions often fluctuate dramatically
due to complex climatic conditions and topography (Lin et al., 2016),
which destabilize the regular ATC dynamics. The comparably high
modeling errors of ATCH in these areas are probably related to in-
accuracy in SATs interpolated across sparsely distributed stations.
To illustrate the improvements in accuracy of the ATCH when re-

ferenced to the ATCO response to land cover type, we provide the
Drmse between these two models per land cover type (Fig. 4). In gen-
eral, greater improvements in accuracy occur in more densely vegetated
areas, whereas lower improvements occur in areas with less vegetation.
Specifically, the Drmse for daytime is highest over grassland, farmland,
closed shrubland, and natural vegetation, with a mean value that ex-
ceeds 2.0 K; whereas it is less than 1.3 K over areas of snow and ice
where vegetation is absent. During nighttime, the maximum Drmse
occurs over farmland, savanna, and natural vegetation, while it is less
than 0.6 K over areas of snow and ice cover and open shrubland, with
relatively low vegetation density. We speculate that the slightly greater
accuracy over urban and built-up areas is attributable to the increased
accuracy of the interpolated SATs, because the stations located on or
near urban and built-up areas are usually more densely distributed
(Fig. 1).
The above results elucidate the spatial variations of the performance

of the ATCH. The temporal (daily scale) variations of the RMSEs pre-
dicted using the ATCH and ATCO are provided for three randomly se-
lected pixels as examples (see Fig. 5). The associated comparisons de-
monstrate that, by incorporating information on daily variations from
meteorological and surface data, the ATCH reliably depicts detailed
fluctuations in LST within short intervals. Detailed scrutiny reveals that,
with the ATCO, the LSTs were substantially underestimated between
DOY (day of year) 90 and 150 and between DOY 250 and 340 (Fig. 5a1
and 5a2); whereas they were substantially overestimated between DOY
190 and 240 and between DOY 290 and 360 (Fig. 5b1 and 5c1). By
comparison, the LSTs predicted using the ATCH generally agree well
with the original LST observations and their associated variations. Si-
milar results also occur during nighttime: e.g., LSTs were under-
estimated by the ATCO between DOY 80 and 130 (Fig. 5d1), although
with different magnitudes.
In addition, the reconstructed daytime gap-free LST images by the

ATCH on 15th of each month in 2012 were also produced to reveal
changes in the spatiotemporal patterns (Fig. 6a-l).

4.1.2. Sources of accuracy improvement
The specific contributions of all the additional procedures used by

the ATCH when referenced to the ATCO on accuracy improvements are
provided in Fig. 7. These procedures include the incorporation of the
additional sinusoidal function (ASF), SAT, NDVI, SM, ALB, and RH.
The assessments demonstrate that the addition of SAT contributes

the most to the ATCH, with a relative accuracy contribution of more
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than 40% for both daytime and nighttime. The incorporation of ASF
results in the greatest degree of improvement: its contribution is around
16%, and the improvement is slightly greater at nighttime than during
daytime. The incorporation of NDVI results in the third-greatest im-
provement, with the contribution of ∼15% for both daytime and
nighttime. The contributions due to the incorporation of SM, ALB, and
RH are less significant compared with the previous three factors, with
contributions of ∼10%. Owing to the simultaneous increase or de-
crease across days, it is reasonable to conclude that the addition of SAT
is the most important. Also, it is interesting that the combined in-
corporation of the NDVI, SM, ALB, and RH contributes more than 40%
to the improvement in accuracy. This is mainly because the LST-SAT
differences are modulated by relative humidity and the local surface
status, including vegetation conditions (represented by the NDVI), soil
moisture, and albedo (Good, 2016; Yang et al., 2017; Benali et al.,
2012; Jin and Mullens, 2014).
As explained in Section 3, the incorporation of ASF can be regarded

as equivalent to the ATCT proposed by Bechtel and Sismanidis (2017),
whereas the integration of the SAT and NDVI is comparable to the ATCE
by Zou et al. (2018). Combining the strategies used by the ATCT and
ATCE, as well as the additional incorporation of the SM, ALB, and RH,
results in the ATCH performing better than both the ATCT (i.e., 4.4 and
3.4 K during daytime and nighttime, respectively) and ATCE (i.e., 4.2
and 3.1 K during daytime and nighttime, respectively). Notably, the
contributions of individual factors, as shown in Fig. 7, are also poten-
tially useful in applications in which the number of LST observations
within an annual cycle is less than nine, in which case strategies should
be designed to reduce the number of parameters of the ATCH, while
simultaneously maintaining modelling accuracy. Further discussion of
the PRA is given in Section 5.1.
The spatial variations of the contributions of individual factors to

the improvements in accuracy are illustrated in Fig. 8. For the SAT,
NDVI, SM, and RH, the greatest contributions occur in eastern and
southeastern China, whereas smaller contributions occur in

Fig. 3. Spatial variations of the RMSEs of the ATCH and ATCO models and the associated differences (Drmse) during daytime (the first column, a–c) and nighttime
(the second column, d–f) based on all the available MOD11A1 LSTs in 2012.
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northwestern China; in contrast, for the ASF and ALB, greater con-
tributions occur in northwestern China. These results can primarily be
attributed to the fact that LST fluctuations are mainly influenced by
vegetation status, precipitation (reflected by RH), and soil moisture
(Good, 2016) across southeastern China which has a generally low
elevation; whereas in northwestern China, the surface of which is
generally sparely vegetated or bare soil, LST fluctuations are affected

more by the albedo (Mildrexler et al., 2011). Notably, larger errors in
LST retrieval over bare soil may also contribute to the slightly higher
contribution of the ASF across northwestern China. In addition, it is
noteworthy that there is no significant difference in contribution be-
tween daytime and nighttime. Several discrepancies between daytime
and nighttime may be ascribed to surface properties or to diurnal
changes in weather.

Fig. 4. Improvements in accuracy (i.e., the Drmse) of the ATCH with reference to the ATCO for different land cover types during daytime (a) and nighttime (b).

Fig. 5. Comparison of the model performances of the ATCH and ATCO at the daily scale at three randomly chosen pixels in daytime (the first column, from a–c) and
nighttime (the second column, d–f). (a1), (a2), (b1), (c1), and (d1) shown in the third column show enlargements of the rectangles within the corresponding
subfigures from the first and second columns. The RMSEATCO and RMSEATCH represent the errors by the ATCO and ATCH, respectively.
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4.2. Strategy #2: Performance comparison with other statistical gap-filling
methods

The comparisons between the ATCH and two frequently used gap-
filling methods (i.e., RKI and RSDAST) are illustrated in Fig. 9. In
general, the evaluations reveal that, although with a slight trend of
increasing modelling error, the performances of the ATCH and RKI
remain relatively stable with increasing gap size. By contrast, the per-
formance of the RSDAST decreases progressively with increasing gap
size. Notably, the mean RMSE of ATCH is always lower than that of the
RKI over modelled gap sizes. This is understandable because the RKI is
based on a linear relationship between the clear-sky LSTs and the two
key variables including the NDVI and elevation, with which the LST
gaps can then be reconstructed. In other words, the RKI assumes that
the variations of the NDVI and elevation are fully capable of explaining

those of LSTs. This assumption may be applicable in most cases, but it is
not sufficiently accurate for predicting LSTs because other factors, such
as soil moisture and especially synoptic conditions, are also responsible
for a large proportion of the LST variations (Sandholt et al., 2002).
A different phenomenon was observed for the RSDAST. The as-

sessments indicate that the RSDAST achieves a better performance than
the ATCH when the LST gap size is small; however, the performance of
RSDAST is worse than that of ATCH when the gap size gradually in-
creases and exceeds G19 (100× 100 pixels) (see Fig. 9). The better
performance of the RSDAST when compared with the ATCH with a
small gap size is probably because the RSDAST is based on ‘spatio-
temporal’ interpolation: i.e., the spatial correlations among adjacent
pixels have been incorporated in the gap-filling process in addition to
the interpolation of temporally discontinuous LSTs (Pede and
Mountrakis, 2018). This better performance may also be because the

Fig. 6. The reconstructed MODIS LSTs during the day in 2012. Only LST images on 15th of each month are listed (a-l). The value subsequent to the ‘Cloud’ denotes
the cloud cover percentage for each month over mainland China.
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Fig. 7. Mean contributions of accuracy improvements (in percentages, %) using the SAT, ASF, NDVI, SM, ALB, and RH for daytime (a) and nighttime (b) across
mainland china.

Fig. 8. Spatial variations of the contributions to accuracy improvement (in percentages, %) by incorporating SAT, ASF, NDVI, SM, ALB, and RH for daytime (first and
second rows, a–f) and nighttime (third and fourth rows, g–l).
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RSDAST employs spatiotemporally local information to assist in the LST
interpolation. It is reasonable that the ‘spatiotemporal’ and ‘local’
nature of a model (e.g., the RSDAST) would make it especially appro-
priate for interpolations wherein the spatial (temporal) gap size is small
(narrow). Similarly, such spatiotemporal methods would become less
effective, and even unfeasible, when the spatial (temporal) gap size
becomes large (long). This is because spatiotemporally local informa-
tion in this scenario is unable to help interpolate large data gaps around
which there are no (or very few) valid pixels. The decreasing perfor-
mance with increasing gap size is confirmed by Fig. 9, which shows that
the prediction error of the RSDAST can reach approximately 9.0 K when
the gap size reaches 600×600 pixels. Furthermore, the spatiotemporal
models build a ‘local’ regression relation for each pixel, and thus the
generalization ability is relatively low. By incorporating a ‘global’
(corresponding to the ‘local’ nature of most gap-filling methods) re-
gression strategy and physical background (e.g., the use of SAT), the
ATCH may not be the best choice when the gap size is small, but its
performance can be maintained even if the data gaps become very
large. We also fully acknowledge that an even better spatiotemporal
model for interpolating LSTs can be designed when the advantages of
the ATCH and RSDAST are combined. Further discussion of the further
development and applications of ATC models is provided in Section 5.2.

4.3. Strategy #3: assessment of the modelled LSTs under all-weather
conditions

The performances of the ATCH with reference to in-situ measure-
ments under all-weather conditions (including both clear and overcast
sky) are provided in Table 5. The assessments show that the LSTs
modelled using the ATCH generally agree well with the ground-based

measurements, with mean RMSEs of 2.7 and 2.1 K for daytime and
nighttime, respectively. Specifically, the RMSEs are typically higher
under overcast than under clear-sky conditions. For example, the mean
RMSEs for daytime and nighttime under clear-sky conditions are 1.9
and 2.0 K, respectively; whereas the values under overcast sky are 3.2
and 2.2 K, respectively. This contrast indicates a slightly lower com-
petence of the ATCH for reconstructing LSTs under overcast conditions,
suggesting that the procedure and auxiliary data incorporated (e.g., the
ASF, SAT, and NDVI) are probably not sufficiently capable of describing
the true LST dynamics under overcast sky conditions.
To achieve an in-depth comparison of the ATCH performances over

the clear- and overcast sky pixels at the daily scale, we derived the daily
true LST dynamics obtained from the SURFRAD sites and the results
reconstructed by the ATCH. Three sites were chosen as examples and
the comparisons are presented in Fig. 10. For all three sites, the eva-
luations indicate that the LSTs predicted using the ATCH generally
agree well with the LST observations for clear-sky pixels. For overcast
pixels, the reconstructed LSTs are close to the measurements for
nighttime, whereas they are mostly overestimated for daytime. This is
probably because only clear-sky LSTs were used to drive the ATC
modelling, although surface and meteorological information under
overcast conditions (e.g., the SAT and RH) were also employed. The
relationships between the LSTs and the associated factors obtained
under clear-sky conditions become less capable of being used to predict
LSTs for the overcast pixels. This reduction in accuracy is more pro-
nounced for daytime than for nighttime, because the LST-SAT differ-
ences are greater for daytime due to daytime insolation (Good, 2016;
Gallo et al., 2011).
The reduced accuracy for overcast situations accords with previous

studies. The ATCH actually demonstrates several advantages over the

Fig. 9. Performance comparisons between the
ATCH and two frequently-used gap-filling
methods, namely RKI and RSDAST, for daytime (a)
and nighttime (b). G01 to G24 denote the 24 LST
gaps with gradually increasing sizes (from 1×1 to
600×600 pixels), with the specific values given
in Section 4. The solid lines and associated rec-
tangular boxes represent the mean RMSE and the
maximum/minimum RMSE. The vertical dashed
lines indicate the gap size (i.e., G19: 100× 100
pixels) for which the performances of the three
models are similar.

Table 5
Accuracies (represented by the RMSE; unit: K) of the reconstructed LSTs by the ATCH with reference to in-situ LSTs measured at the seven SURFRAD sites under clear-
sky, overcast-sky, and all-weather conditions.

Site RMSE for daytime (K) RMSE for nighttime (K)

Clear-sky Overcast-sky All-weather Clear-sky Overcast-sky All-weather

BON 1.6 3.0 2.5 2.0 2.0 2.0
BCO 2.3 3.6 3.1 2.4 2.7 2.5
FPK 2.7 3.3 3.1 2.1 2.3 2.2
GWN 1.3 3.5 2.6 1.4 1.8 1.6
PST 1.9 3.0 2.7 1.6 1.8 1.7
SXF 1.5 2.7 2.2 2.4 2.4 2.4
DRA 2.3 3.2 2.7 2.2 2.3 2.3
Mean 1.9 3.2 2.7 2.0 2.2 2.1
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existing methods (Lu et al., 2011; Yu et al., 2014; Zeng et al., 2018): the
overcast sky RMSEs predicted using the ATCH at these sites are only
2.7–3.6 K and 1.8–2.7 K for daytime and nighttime, respectively
(Table 5). These errors are considerably lower than those in previous
reports, which typically demonstrated that the mean RMSEs over
overcast pixels are approximately 4.5 and 3.5 K for daytime and
nighttime, respectively. This modification implies that the SAT and RH
contain information about LST variations under overcast conditions.

5. Discussion

5.1. Parameter-reduction approaches (PRAs) for the ATCH

The ATCH with nine free parameters was shown to have a generally
high accuracy and well-behaved generalization ability in deriving an-
nual LST dynamics. Note that practitioners may need to model the
annual LST dynamics under scenarios where the number of input LSTs
is less than nine, e.g., the number of valid Landsat thermal observations
(with the 16-day revisit frequency) within an annual cycle may be
fewer than nine in some subtropical or tropical areas where clouds are
prevalent. Based on the analysis of the model structure and the attri-
bution of contribution to accuracy improvements, we therefore

proposed different PRAs to reduce further the parameter number of the
ATCH to less than nine, aiming to formulating model derivatives that
are able to adapt different scenarios. Over regions that experience se-
vere cloudy conditions (i.e., the number of valid LST observations may
be less than nine), the ATCH-derivatives with less parameters remain
usable to assist the generation of daily LSTs with fine spatial and
temporal resolutions (Weng et al., 2014; Fu and Weng, 2016) or the
examination of landscape thermal patterns (Bechtel, 2011; Fu and
Weng, 2015).
The parameter reduction was generally conducted by setting a

portion of the parameters of the ATCH to zero and the orders of para-
meter-reduction were based on the contributions to accuracy im-
provements provided in Section 4.1.2. Using Case 4 as an example, the
PRA ‘k2, k3, and k4= 0’ indicates that these three parameters are preset
to zero (i.e., remove the k2γ2, k3γ3, and k4γ4 in Eq. (6)) and accordingly
only six parameters are left (i.e., T0, a1, b1, and k1). Similarly, under
Case 2, the PRA ‘k4= 0’ used for daytime differs from that for nighttime
(‘k3= 0’). This is because the abovementioned attributions specify that
the RH (its multiplier is k4) is the least important factor contributing to
accuracy improvements, whereas the albedo (its multiplier is k3) was
specified to play such a role for nighttime. From these PRAs, we finally
obtained six ATCH-based derivatives (corresponding to Cases 2 to 7),

Fig. 10. Comparisons between the LSTs predicted using the ATCH and those measured at three SURFRAD sites (i.e., the BON, FPK, and SXF) for daytime (the first
column) and nighttime (the second column). The ‘Error’ denotes the mean difference between the ATCH-predicted and in-situ LSTs at the 8-day scale. The surface
types of BON, FPK and SXF are mostly grassland and cropland.
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with the parameter number ranging from eight to three, in decreasing
order (see Table 6). Note that the derived model under Case 6 is ap-
proximately equivalent to the ATCE proposed by Zou et al. (2018); and
that under Case 7 it is equal to the ATCO of Bechtel (2011). All the
derived models were then used to reconstruct the LSTs over mainland
China, and the associated RMSEs of each model are listed in Table 6.
These results show that the prediction errors of the ATCH-derivatives
increase gradually with decreasing parameter number, with the RMSE
rising from 3.4 (2.8) to 5.2 K (3.5 K) for daytime (nighttime). In con-
trast, the addition of more LST-related controls to the ATCH is antici-
pated to increase the prediction accuracy of LSTs, but this would result
in ATCH-derivatives that are more sophisticated and therefore would
probably decrease the generalization ability of the model. Further dis-
cussion related to the additional usable controls is given in Section
5.2.2. With these derivatives, practitioners have more options for
choosing the most appropriate model for specific scenarios.
In addition, we need to clarify that the PRAs were proposed based

on the empirical results presented above. There may exist alternatives,
yet here we only choose the best one that balances the prediction ac-
curacy and generalization ability. Using Case 4 as an example, instead
of setting k2, k3, and k4= 0 (i.e., as indicated for the ATCH_C4), we can
also combine k1-k4 to one kwhile still keep γi (i=1, 2, 3, 4) in Eq. (6) to
obtain a new ATCH-based derivative (here termed the ATCH_SK) with
six parameters. The ATCH_SK requires incorporations of multiple fac-
tors including NDVI, soil moisture, albedo and relative humidity, which
would likely decrease the model generalization ability when compared
with the ATCH_C4. Similarly, under Case 5, we recommend ATCH_C5
because ATCH_C5 behaves a higher accuracy than ATCT proposed by
Bechtel and Sismanidis (2017).

5.2. Prospects and limitations

5.2.1. Prospects
By balancing prediction accuracy and generalization ability, this

study proposes a hybrid framework (i.e., the ATCH) for modelling an-
nual LST dynamics with satellite-derived LSTs as model inputs. The
ATCH has been shown to possess a high degree of accuracy and it can
derive a series of sub-models that are suitable for various scenarios with
different numbers of input LST images within an annual cycle. The
following points are noteworthy: (1) The ATCH is a ‘global’ framework,
which indicates that for annual modeling all the LSTs within a year are
used as inputs to drive the modeling simultaneously for each pixel. (2)
The ATCH is formulated only from the temporal perspective, i.e., it is a
‘temporal’ framework and no adjacent spatial information was

incorporated during model formulation. The prediction accuracy of the
ATCH will be improved by incorporating neighboring-pixel information
if the generalization ability is ignored. (3) The ATCH is a ‘semi-physical’
framework, indicating that mechanisms of heat transfer have been in-
corporated in the modelling.
The ‘global’ and ‘temporal’ features guarantee its generalization

ability, such that the associated model performance barely changes
with the decreasing input number of LST images; however, they also
result in reduced prediction accuracy compared to the spatiotemporal
interpolation models when the LST gaps are spatially small or tempo-
rally narrow. This study was not intended to design a method/algo-
rithm that is able to reconstruct LST gaps with the highest accuracy in
all scenarios, although its performance when the LST gaps are large is
promising. Rather, it primarily aims at providing a temporal modelling
framework that is potentially valuable for designing better spatio-
temporal models for interpolating LSTs. For example, the LST gaps may
be reconstructed with an even higher degree of accuracy once spatially
local information is integrated into the temporal modeling, such as
demonstrated recently by Li et al. (2018a). The ATCH is also potentially
useful for the spatiotemporal fusion of LST products with different re-
solutions, such as those conducted by Weng et al. (2014) and Quan
et al. (2018). The ‘semi-physical’ nature of the ATCH makes it com-
parable to the very complex land surface models, which can simulate
subsurface, surface, and atmospheric variables simultaneously in ad-
dition to the LST. In fact, the ATCO can be perceived as a simplified
LSM, because it can be interpreted solely as the solution of the heat
conduction equation when constrained by the surface energy balance,
with insolation (which is generally sinusoidal within an annual cycle)
as the major surface flux that drives the annual LST dynamics. Com-
pared with the LSMs, the ATCH is much simpler and can be more sui-
table for the modeling of LST dynamics at a very high spatial resolution
(e.g., 100m for the Landsat thermal data, or even finer).

5.2.2. Limitations
Although progress has been made, there are several limitations of

the ATCH that require attention in the future: First, the ATC modeling
can be performed on either the daily mean LST or instantaneous LST at
a fixed time within a diurnal cycle. Nevertheless, the overpass times for
MODIS LST observations may vary slightly from day-to-day: e.g., the
maximum difference in overpass time for the MODIS LSTs acquired in
the morning within an annual cycle can reach 2.0 h. Prior to the ATC
modelling, temporal normalization of LSTs is therefore needed to help
adjust the daily LSTs to the same overpass times during a diurnal cycle.
In this study, we performed a normalization of LSTs according to the
approach proposed by Duan et al. (2014). The results provided in
Appendix B indicate that the LST normalization procedure slightly
improves the accuracy of ATC modelling. In addition, we used the daily
mean SATs to assist the modeling. The ATC modeling may be further
improved once instantaneous SATs shortly after the overpass times of
MODIS observations are employed, considering the phase difference in
timing (around 2 h) between the LST and SAT (Good, 2016). Further-
more, the resolutions of the additional datasets were resampled to 1 km
to match that of the LST product, which may introduce uncertainties for
analyzing the contributions to accuracy improvements. We therefore
performed a comparison to investigate the scaling effect of accuracy
assessments at the 1- and 25-km scales. The results indicate that the
scale of these datasets only slightly affects the contributions to accuracy
improvements, with the percentage of less than 0.5% for both the day
and night. Likewise, because of the surface thermal anisotropy, the
variations in view angles of observed LSTs (e.g. varying from −55° to
+55° for the MODIS LSTs) can also induce uncertainties (Wan et al.,
2002). Although the angular normalization of LSTs was achieved at the
pixel scale in previous studies (Li et al., 2013), there is currently, to the
best of our knowledge, no practical and simple way to perform an an-
gular normalization for the MODIS LSTs.
Second, the ATCH has been shown to produce relatively higher

Table 6
Model derivatives obtained from the original ATCH with different PRAs as well
as the associated performances (denoted by the RMSE in unit K).

Cases Number of
parameters

PRAs* RMSE Model
derivatives

Day Night

Case 1 9 — 3.4 2.8 ATCH
Case 2 8 k4= 0 (day) or

k3= 0 (night)
3.6 2.9 —

Case 3 7 k3 and k4= 0 3.7 2.9 —
Case 4 6 k2, k3, and k4= 0 3.9 3.0 ATCH_C4
Case 5 5 a2, b2, k3, and

k4= 0
4.0 3.0 ATCH_C5

Case 6 4 a2, b2, k2, k3, and
k4= 0

4.2 3.1 ATCE

Case 7 3 a2, b2, k1, k2, k3,
and k4= 0

5.2 3.5 ATCO

* T0, a1, a2, b1, b2, k1, k2, k3, and k4 are the nine free parameters of the ATCH
(see Eq. (6)). Note that under Case 2, the PRAs used for the daytime and
nighttime are different: the PRA ‘k4= 0’ was used for daytime and the PRA
‘k3= 0’ was used for nighttime. The column ‘Model derivatives’ only lists the
optimal ATCH-based derivatives for each case.
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RMSEs over areas with less vegetation: e.g., over snow and ice. One
possible reason may be because of the inaccurate SATs interpolated
with very few in-situ SATs by the simple spatial interpolation method
over these areas. Another possible reason is that the LST-related con-
trols selected by this study are insufficient for representing the daily
LST variations for these areas: for example, the LST-SAT relationship
over snow-covered areas becomes weaker than that over snow-free
areas (Shamir and Georgakakos, 2014). With a better method for in-
terpolating SATs, such as that proposed by Zhang et al. (2016), and
with the involvement of more factors directly or indirectly related to
the LST, such as topography (Hengl et al., 2012) and the snow index
(Shamir and Georgakakos, 2014), the performance of the ATCH model
is anticipated to be further improved.
Third, despite the notable improvement in simulating overcast-sky

LSTs when compared with previous methods that mainly focus on clear-
sky conditions, the ATCH has been demonstrated to slightly over-
estimate LSTs under overcast conditions. This is probably because the
incorporated meteorological and surface factors are still inadequate to
reflect the LST variations under overcast sky. Previous studies have
tried to incorporate additional data that has a more direct relationship
with LSTs under overcast sky: such as microwave data (Duan et al.,
2017; Kou et al., 2016), cloud properties (Aires et al., 2004; Fan et al.,
2015), and especially surface radiation fluxes (Zhang et al., 2015; Zeng
et al., 2018). For example, although uncertainties may exist regarding
the incident shortwave radiation (ISR) product (Zhang et al., 2014), the
ISR is anticipated to better reflect the impacts of cloud on the LST than
the LST-related controls used in the present study. This is because the
ISR generated by Zhang et al. (2014) was generated by considering the
surface status and the sky conditions, and it is therefore highly desirable
to integrate this related information to assist the ATC modeling under
overcast conditions.

6. Conclusion

Annual temperature cycle (ATC) models have been found valuable
for the generation of spatio-temporally seamless LSTs, as well as for
various applications. However, current ATC models were developed
with the emphasis either on prediction accuracy or on generalization
ability; and they remain incapable of providing options for users in the
adaptation to various scenarios when different numbers of thermal
observations are available as model inputs. To overcome these limita-
tions, we propose a flexible ATC modelling framework (termed the
ATCF) by integrating multiple harmonics and a linear function of LST-
related factors. Starting from the ATCF, we obtained a hybrid ATC
model (termed the ATCH) that can balance prediction accuracy and
generalization ability by combining two harmonic functions with a
linear function of surface air temperature (SAT), NDVI, albedo, soil
moisture, and relatively humidity. Based on the ATCH, various para-
meter-reduction approaches (PRAs) were designed to provide model
derivatives when different numbers of thermal observations are avail-
able.

Three strategies were employed to evaluate the ATCH under both
clear- and overcast-sky conditions. The first and second strategy com-
pared the ATCH with the original sinusoidal ATC model (termed the
ATCO) and its variants, as well as with two gap-filling methods (i.e., the
RKI and RSDAST) under clear-sky conditions. In the third strategy, the
LSTs predicted by the ATCH were directly evaluated with in-situ LST
measurements under both clear- and overcast-sky conditions. The as-
sessments show that the ATCH has a greater accuracy than the ATCO,
with decreased RMSEs of 1.8 and 0.7 K for daytime and nighttime, re-
spectively. By comparing the ATCH with the RKI and RSDAST, we
found that the ATCH performs better than the RKI and it also performs
better than the RSDAST for large gap sizes (e.g., 100× 100 pixels). This
result implies that the ATCH has the advantage of filling spatially large
and temporally long LST gaps, and thus it has a better generalization
ability compared to most gap-filling methods. By incorporating LST-
related factors under overcast conditions, the ATCH shows a better
performance in filling LSTs under clouds than approaches that only
incorporate information under clear-sky conditions. Further attribution
analysis shows that the addition of a sinusoidal function (ASF), SAT,
NDVI, and other LST-related factors can respectively contribute around
16%, 40%, 15%, and 30% to the improved accuracy. This analysis is
useful for providing model-derivatives by PRAs designed. With these
derivatives, practitioners will have more options for selecting the most
appropriate model for specific scenarios. We believe that the ATCH can
enhance the quality of LST products and extend the associated appli-
cations.
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Appendix A. Demonstration of two predetermined assumptions used for model construction

The first assumption is that ‘an increased number of harmonics is required for modelling both the primary and subordinate components of the LST
dynamics, but there exists a suitable number of harmonics to assist the modeling of the inter-annual LST dynamics stably’. A comparison of the modeling
capability among the ATCO (with a single harmonic) (Bechtel, 2011), ATCT (with two harmonics) (Bechtel and Sismanidis, 2017), and the HANTS
(with a series of harmonics) (Xu and Shen, 2013) was presented in Fig. A1a. This comparison indicates that both the HANTS and ATCT achieve a
better performance than the ATCO. The HANTS does simulate well some of the short-term LST variations, but the use of a large number of harmonics
more than needed by the HANTS would probably render the associated ATC model unstable (e.g., the over- and under-fitting phenomena as shown in
Fig. A1a1) (Brooks et al., 2012).
The second assumption is that ‘meteorological (e.g., SATs) and surface and status can be used to help formulate an ATC model that is sufficiently stable

as well as capable of representing daily LST fluctuations’. Previous studies have integrated the SATs and surface status (i.e., the NDVI) to help model the
daily LST fluctuations (Zou et al., 2018): Day-to-day SATs are strongly coupled with those in LSTs though with different magnitudes (ΔTair) (Kloog
et al., 2014; Good, 2016; Good et al., 2017); and ΔTair can be can be regulated by the NDVI to some extent. Our further analysis, illustrated by Fig.
A2c and d, demonstrates that the differences between the observed and modeled SATs by Eq. (4) are similar to those on LSTs, with the correlation

Z. Liu, et al. ISPRS Journal of Photogrammetry and Remote Sensing 151 (2019) 189–206

202



coefficient r of 0.89. In addition, the incorporation of the NDVI and a single multiplier (i.e., the ATCE) is insufficient to fully capture ΔTair (refer to
Fig. A1b1), because ΔTair is determined simultaneously by various meteorological and surface conditions (Fu and Weng, 2018). Consequently, more
factors such as the albedo, soil moisture, and relative humidity should be incorporated (i.e., as conducted by the ATCH) (Lin et al., 2016; Kloog et al.,
2014; Good, 2016).

Fig. A1. A demonstration of the two pre-
determined assumptions used for model con-
struction, wherein (a) and (b) are used for elu-
cidation of the first and second assumptions,
respectively. The Obs LST, ATCO, ATCT, and
HANTS in (a) represent the observed LST dy-
namics and the predicted LSTs by incorporating
a single sinusoidal function (Bechtel, 2011), two
harmonics (Bechtel and Sismanidis, 2017), and a
series of harmonics (Xu and Shen, 2013), re-
spectively. The Obs LST, ATCE, and ATCH in (b)
represent the observed LST dynamics and the
predicted ones by the incorporations of SATs and
NDVI (i.e., the ATCE) (Zou et al., 2018) and of
more information on surface and meteorological
status (i.e., the ATCH), respectively. (a1) and
(b1) are two enlarged panels that illustrate the
modeling details around DOY 200.

Fig. A2. A demonstration of the similarity be-
tween the LST and SAT dynamics as well as the
similarity of the differences between the ob-
served and modelled LSTs and SATs. (a) The
observed daily LST and SAT dynamics for an
entire year at a specific MODIS pixel where an in-
situ site is located. (b) The correlations between
the LSTs and SATs. (c) DiffLST and DiffSAT re-
present the differences between the observed
and modelled LSTs and SATs for an entire year,
respectively, again for the aforementioned spe-
cific pixel. (d) The correlations between DiffLST
and DiffSAT.

Table B1
Modelling accuracy of the ATCH using the original MODIS LSTs and the temporally normalized LSTs
for the tile h26v04.

RMSE (K) Daytime Nighttime

ATCH (with the original LSTs) 3.4 2.8
ATCH (with normalized LSTs) 3.1 2.6
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Appendix B. Effect of diurnal observation time on prediction accuracy

This appendix includes one table (Table B1) and one figure (Fig. B1) that demonstrate the uncertainty of ATC modelling due to the observation
time difference for daily MODIS LSTs. Taking Terra/MODIS tile h26v04 as an example (the variation of the observation time can exceed 2 h), we
normalized all the daytime (nighttime) LSTs to those at 10:30 (22:30) by using the temporal normalization model proposed by Duan et al. (2014).
The results listed in Table B1 and Fig. B1 indicate that the LST normalization procedure slightly improves the accuracy of ATC modelling (by around
0.3 K for both daytime and nighttime), but the improvement may occasionally be minimal (e.g., Fig. B1c).
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