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a b s t r a c t

The Universal Thermal Climate Index (UTCI) is an important and frequently used indicator for evaluating
thermal comfort. However, there is a lack of city-scale UTCI mapping over urban agglomerations during
heat waves, and of studies of the variation of UTCI-based urban heat island intensities across cities. In
addition, there is a need to evaluate the relationships among UHI intensities calculated by different types
of temperature. In this study of the Yangtze River Delta urban agglomeration (YRDUA), we conducted
city-scale UTCI mapping during periods of heat waves, based largely on satellite data. We then compared
the UHI intensities in three megacities (Nanjing, Shanghai, and Hangzhou) in terms of the UTCI, and
distinguished the differences between UHI intensities based on different types of temperature. Our
principal findings are as follows: (1) The UTCI varies considerably with land cover type, with values
generally higher in urban areas. Although the spatial pattern of UTCI and air temperature appears similar,
over urban surfaces the former indicator is significantly higher than the latter. (2) The areas affected by
(very) strong thermal stress (quantified by the UTCI) expanded by 18% and 36.2%, respectively, during
daytime and nighttime over the YRUDA from 2002 to 2018. The increase occurred mainly in city pe-
ripheries where rapid urbanization has occurred. (3) The UTCI-based UHI intensity (UHII) is lower than
those based on land surface temperature (LST) and mean radiant temperature, but greater than those
based on surface air and dew-point temperature. The difference among these UHIIs (i.e., UTCI- and other
temperature-based measures) over the three selected megacities are relatively small in the day, but they
are relatively large at night. Our results are potentially valuable for facilitating city-scale UTCI mapping
and for evaluating thermal comfort at the regional scale.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Thermal comfort is a biometeorological indicator based on heat
exchange between human bodies and their surroundings (Fanger,
1970), and it has frequently been used to assess the overheating
risk of human bodies at different spatiotemporal scales. There is an
increasing incidence of heat waves (occurrence of extreme high
nlin Campus, No.163 Xianlin
hina.
n).
temperatures) worldwide, mostly due to the aggregation of esca-
lating global warming and urban heat islands (UHIs) (Anderson and
Bell, 2010; Barriopedro et al., 2011; He et al., 2020; Meehl and
Tebaldi, 2004; Trenberth and Fasullo, 2012; Zuo et al., 2015).
These widespread heat waves have drastically altered thermal
comfort and exacerbated human health risks, resulting in increased
mortality (Anderson and Bell, 2009; Hajat et al., 2010; Mora et al.,
2017; Schwartz et al., 2004). There is currently a large impetus to
explore the spatiotemporal variations of thermal comfort, espe-
cially over urban agglomerations during heat wave events, in order
to support the development of adaptation strategies to mitigate
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Nomenclature

Acronyms
ALR adiabatic lapse rate
ECMWF European Centre for Medium-Range Weather

Forecasts
IGBP international geosphere-biosphere programme
LST land surface temperature
MODIS moderate resolution imaging spectroradiometer
MENEX Man-ENvironment heat Exchange
NDVI normalized difference vegetation index
PET physiologically equivalent temperature
PT perceived temperature
SD standard deviation
SET standard effective temperature
UTCI universal thermal climate index
UHI urban heat island
WRF weather research and forecasting
YRDUA Yangtze River Delta urban agglomeration

Variables used in equations
g acceleration of gravity
Ipixel pixel-based UHII
Imean mean UHII for each city

ps pressure at the surface
pL bottom pressure
pL1 pressure at the lowest level in the atmospheric

profile
pL2 pressure at the level above pL1
Ta surface air temperature
Ta_L atmospheric temperature corresponding to pL
Ta_L1 atmospheric temperature corresponding to pL1
Ta_L2 atmospheric temperature corresponding to pL2
Td surface dew-point temperature
Td_L1 dew-point temperature corresponding to pL1
Td_L2 dew-point temperature corresponding to pL2
Tmrt mean radiant temperature
Ts land surface temperature
Trural mean temperature for the rural areas
Turban mean temperature for the urban areas
VP atmospheric vapor pressure
Vs wind speed
s Stefan-Boltzmann constant
εa air emissivity
εg land surface emissivity
εp emissivity of the human body surface
εsky clear-sky emissivity
r air density
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heat risks (Lavell et al., 2012; Lai et al., 2019).
In the past few decades, numerous indicators have been

designed to quantify thermal comfort based on human heat budget
models; they include Physiologically Equivalent Temperature (PET),
Perceived Temperature (PT), Standard Effective Temperature (SET),
and Universal Thermal Climate Index (UTCI) (Bła _zejczyk et al., 2013;
Gagge et al., 1986; Gonzalez et al., 1974; Mayer and H€oppe, 1987;
Staiger et al., 2012). Indicators such as the PET, PT, and SET adopt
models with only two nodes simplified from thermophysiology and
heat exchange theories (Pappenberger et al., 2015), and as a result
they are relatively insensitive in complex environments (Fiala et al.,
2012). In contrast, the UTCI employs the multi-node model (Psikuta
et al., 2012), in which a variety of meteorological variables are
incorporated (e.g., air temperature, mean radiant temperature, and
wind speed). Compared with the other indicators, the UTCI better
considers the surrounding environment, human physiological
characteristics, and the thermal resistance of clothing (Bła _zejczyk
et al., 2012; H€oppe, 2002). These additional considerations in-
crease its sensitivity to changes in meteorological variables and
consequently enhance its suitability for quantifying thermal com-
fort under various climates. They also make the UTCI more adaptive
for describing changes in the thermal environment and therefore it
is appropriate for the evaluation of thermal comfort (Jendritzky
et al., 2012).

Previous estimations or mapping of the UTCI have been con-
ducted at the site, local (or neighborhood), and continental (or
global) scales. At the site scale, the UTCI estimation relies mainly on
ground-based measurements of various meteorological variables
(e.g., air temperature and mean radiant temperature). Based on
such measurements, the spatiotemporal variation of the UTCI and
its relationships with associated meteorological variables have
been studied at the site scale (Br€ode et al., 2012b). Rapid UTCI
mapping over a relatively larger area is valuable for applications
such as urban planning and the evaluation of health risk induced by
heat waves (Chen and Ng, 2011; Jendritzky and Tinz, 2009). How-
ever, the limited and sometimes sparsely distributed site-based
meteorological stations hinder the use of UTCI mapping for cities
with high spatial heterogeneity, which limits our understanding of
thermal comfort at a larger spatial scale. At the local (or neigh-
borhood) scale, a variety of approaches have been proposed for
mapping UTCI in recent years. One frequently-used approach is to
combine ground-based measurements andmodel simulations (e.g.,
by the ENVI-Met) (Battista et al., 2016; Park et al., 2014; Tumini
et al., 2016; Xu et al., 2019). The recently available LiDAR technol-
ogy is also useable for supporting UTCI mapping (Chen et al., 2016).
These approaches have the advantage of completely accounting for
urban geometry and fabrics (Alavipanah et al., 2018; Br€ode et al.,
2012a,b; Johansson and Emmanuel, 2006; Mijorski et al., 2019). In
addition to urban micro-structure and micro-climate, the UTCI is
also controlled by a series of environmental factors such as the
background climate at an even larger scale (Ho et al., 2016).
Nevertheless, UTCI mapping at the local (or neighborhood) scale is
unable to fully reflect the influences of such environmental controls
at a very large scale (Pappenberger et al., 2015). At the continental
(or global) scale, this status quo gives rise to the use of reanalysis
data to support UTCI mapping, with a spatial resolution of around
or coarser than 10 km (Di Napoli et al., 2018; ECMWF, 2020;
Pappenberger et al., 2015).

Although advances in UTCI mapping have been achieved at
various spatial scales (i.e., the site, local, and continental scales),
here we identify a gap at the regional scale (or city-scale) over
which inter- and inner-city variations in thermal comfort can be
properly balanced, especially from the following three perspec-
tives. First, satellite remote sensing data, usually with a spatial
resolution ranging from meters to kilometers, are well suited for
supporting UTCI mapping at the regional scale; e.g., satellite-
derived land surface temperatures (LSTs) from Landsat have been
employed for mapping the UTCI (Bła _zejczyk, 2011). However, the
relatively narrow swath (185 km) and long revisit cycle (16 days) of
Landsat data hinder their application at the regional scale during
required periods. Second, although thermal comfort can be exac-
erbated with the superposition of UHIs and heat waves (Arghavani
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et al., 2020; Hajat et al., 2010; Imran et al., 2018; Mora et al., 2017),
no single study has yet accomplished UTCI mapping over an urban
agglomeration during heat waves. Third, the UHI intensity (UHII) is
an indicator describing the urban influence on the background
thermal environment (Liu et al., 2020; Oke et al., 2017), and it has
been quantified by different types of temperature (e.g., skin-
surface, surface air, and apparent temperatures) (Ho et al., 2016;
Hu and Brunsell, 2015; Imhoff et al., 2010; Voogt and Oke, 2003).
However, it remains unclear how the UTCI-based UHII would vary
across cities within an urban agglomeration, particularly compared
with UHI intensities calculated by other types of temperature.

In view of these challenges, in this study we attempted to
conduct UTCI mapping largely with the assistance of satellite data
at the city scale, especially over an urban agglomeration during
heat wave periods. We also examined the variations of UTCI-based
UHI intensities over typical cities in the Yangtze River delta region
of China and compared them with those quantified by other types
of temperature. We hoped that the results of the study would help
advance UTCI mapping and deepen our understanding of the urban
thermal environment. The rest of this article is organized as fol-
lows: Subsequent to the description of the study area in Section 2,
Section 3 presents data and methodology for satellite mapping of
UTCI. Results and discussion are presented in Section 4; and the
conclusion is finally drawn in Section 5.

2. Study area

The Yangtze River delta urban agglomeration (YRDUA), which
contains a total of 16 cities, was selected as the study area (Fig. 1).
The YRDUA is located in the lower reaches of the Yangtze River
adjacent to the East China Sea. It is one of the three largest urban
agglomerations in China with a population of more than 100
million. The terrain is dominated by plains with several mountains
and hills in the southwest.

With a subtropical monsoon climate, the region is warm and
humid with four distinct seasons. The annual mean temperature
range is 18e23 �C, and the highest monthly mean temperature is
greater than 28 �C; the annual mean precipitation is 1500 mm. The
western Pacific subtropical high pressure zone makes it one of the
warmest regions in summer over mainland China, and heat waves
are quite common (Gao et al., 2015). In the past several decades, the
region has experienced rapid economic development and urbani-
zation, resulting in gradually increasing UHIs across all of the cities
(Feng et al., 2012; Yang et al., 2017). The combination of more
frequent heat waves and increased UHIs has reduced the thermal
Fig. 1. Geolocation and surface properties across the Yangtze River delta urban
agglomeration (YRDUA). Elevation and spatial distribution of the meteorological sta-
tions used in this study (a), location of the YRDUA in China (b), and the land cover
types (c).
comfort and increased the associated health risks within the region
(Hu et al., 2017; Kong et al., 2017).

3. Data and methods

3.1. Data

3.1.1. Meteorological data
The meteorological data used in this study include air temper-

ature, dew-point temperature, and wind speed, for the interval
from 2002 to 2018. All of these data were obtained from the pub-
licly accessible Weather Underground (https://www.
wunderground.com/). Considering that hourly meteorological ob-
servations are required to match the overpasses of satellite data, a
total of ten stations across the YRDUAwere retrieved (see Fig. 1a for
the retrieved stations). Notably, the wind speed data were directly
used to assist in calculating the UTCI as it is difficult to estimate this
parameter using remote sensing. Surface air and dew-point tem-
peratures were used to evaluate the accuracies of the parameters
that were retrieved by remote sensing.

3.1.2. Satellite data
We used five satellite products acquired byModerate Resolution

Imaging Spectroradiometer (MODIS) (onboard the Aqua satellite)
for 2002e2018, including the LST (MYD11_L2, daily), Atmosphere
Profile (MYD07_L2, daily), Cloud Mask (MYD35, daily), Normalized
Difference Vegetation Index (NDVI) (MOD13A2, 16-day compos-
ites), and yearly land cover type (MCD12Q1) data. The Aqua rather
than the Terra satellite was chosen because the transit time of Aqua
in the afternoon (at ~13:30 local solar time) corresponds better to
the daily maximum temperature during summer. All of these data
were downloaded from the EOSDIS (https://search.earthdata.nasa.
gov/search). Detailed information on these MODIS products is
given in Table 1.

The LST product (i.e., MYD11_L2) was used to obtain the LST and
to estimate the mean radiant temperature. The atmospheric pro-
files product (i.e., MYD07_L2) was used to estimate or retrieve the
surface air and dew-point temperatures. The cloud mask product
(i.e., MYD35) was used to detect clear-sky pixels (or the cloud
percentage in contrast) and to estimate the solar radiation flux,
facilitated by the already-calculatedmean radiant temperature. The
NDVI data retrieved from MYD13A2 were used to investigate the
relationship between UTCI and vegetation coverage. The main land
cover types retrieved from MCD12Q1 include bare soil, water, for-
est, grassland, farmland, towns, and wetlands across the YRDUA
(Fig. 1c).

Data pre-processing steps such as geometric correction, image
mosaicing, and resampling were performed on the raw images. The
MODIS Reprojection Tool was directly used for the image mosaicing
of the LST, cloud mask, and NDVI data, while the MODIS Conversion
Toolkit was used for processing atmospheric profile data. Note that
all the MODIS data were resampled to the same resolution (i.e.,
1 km).

3.2. Methods

A heat wave period was defined as the scenario in which the
daily maximum temperature exceeded 35 �C for three consecutive
days (Gao et al., 2015; Huang et al., 2010; Sun et al., 2014). To avoid
data gaps due to clouds, the LST data during the heat wave period
were composited to obtain spatially continuous UTCIs (Di Napoli
et al., 2018; Yang et al., 2018).

A flowchart for the satellite-based UTCI mapping is presented in
Fig. 2. The UTCI involves four parameters as inputs: surface air
temperature (Ta), atmospheric vapor pressure (VP), mean radiant
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Table 1
Detailed information on the MODIS products used in this study.

Product name Product type Resolution (km) Temporal granularity

MYD11_L2 Land Surface Temperature
& Emissivity

1 Daily

MYD07_L2 Atmosphere Profile Product 5 Daily
MYD35 Cloud Mask and Spectral Test Results 1 Daily
MYD13A2 Vegetation Indices 1 16-Day
MCD12Q1 Land Cover Type 0.5 Yearly

Fig. 2. Flowchart of the satellite mapping of the UTCI (the parameters in the blue boxes are required for calculating UTCI). Ts, Ta, Td, and Tmrt represent the land surface temperature,
surface air temperature, dew-point temperature, and mean radiant temperature, respectively; and Rs, VP, and Vs are the shortwave solar radiation, atmospheric vapor pressure, and
wind speed, respectively. The SolAlt and MENEX models were used to help estimate Tmrt (further explanation is given in Section 3.2.3). (For interpretation of the references to colour
in this figure legend, the reader is referred to the Web version of this article.)
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temperature (Tmrt), and wind speed (Vs) (Jendritzky et al., 2012). All
of these parameters can be estimated from remote sensing data,
except Vs. In detail, Ta was directly retrieved from the MYD07_L2
product (Bisht and Bras, 2010) (see Section 3.2.3). VPwas indirectly
estimated based on the surface dew-point temperature (Td), which
was retrieved in a similar way to Ta (Section 3.2.2). The calculation
of Tmrt is relatively complex because human bodies can receive
radiation from various directions. Here we mainly considered the
impacts of solar shortwave radiation and surface emitted longwave
radiation, quantified by the Man-ENvironment heat Exchange
(MENEX) model that requires the Ts, Ta, VP, and the cloud mask as
inputs (Section 3.2.3). Vs was interpolated from ground-based
measurements (Section 3.2.4). Finally, we estimated UTCI based
on an established look-up table between UTCI and the aforemen-
tioned parameters (Br€ode et al., 2012b).

3.2.1. Estimation of instantaneous Ta
Ta is one of the most basic parameters for calculating the UTCI. Ta

can be measured directly with ground-based instruments, but such
in-situ measurements cannot accurately capture the thermal status
at a large scale, especially over urban surfaces that are character-
ized by high heterogeneity (Ho et al., 2014; Xu et al., 2014). Satellite
data can overcome the inaccurate proxy of ground-based mea-
surements through pixel-based sampling. Here we used the at-
mospheric profile product (MYD07_L2) to estimate Ta because of its
demonstrated high accuracy in various applications (Jang et al.,
2010; Hu and Brunsell, 2015).

Each profile within the MYD07_L2 product is divided into 20
layers depending on pressure. According to the hydrostatic
assumption, Ta can be retrieved by the adiabatic lapse rate (ALR)
using a simple parameterization method (Bisht and Bras, 2010; Zhu
et al., 2017), given as:

Ta¼ Ta L � ALR=rg,ðps �pLÞ (1)

where Ta is the air temperature at the surface; Ta_L is the atmo-
spheric temperature at the lowest pressure level in the atmospheric
profile; ps and pL are the pressure at the surface and the bottom
pressure, respectively; and r and g are two constants which denote
the air density and acceleration of gravity, respectively. For Eq. (1),
the air temperatures and pressure are available in the atmospheric
profiles, and therefore Ta can be estimated by the ALR, which is
calculated using the two pressure levels closest to the surface (Zhu
et al., 2017). Consequently, Ta can be estimated by reformulating Eq.
(1), as follows:

Ta¼ Ta L1 �
��
Ta L2 � Ta L1

� � ðpL2 �pL1Þ
�
,ðps �pL1Þ (2)

where pL1 is the pressure at the lowest level in the atmospheric
profile; pL2 is the pressure level above pL1; and Ta_L1 and Ta_L2 are the



Table 2
Equivalent temperatures of the UTCI categorized in terms of thermal stress.

UTCI range (�C) Stress category Number

above þ46.0 Extreme heat stress 4
þ38.1 to þ46.0 Very strong heat stress 3
þ32.1 to 38.0 Strong heat stress 2
þ26.1 to þ32.0 Moderate heat stress 1
þ9.1 to 26.0 No thermal stress 0

C. Wang et al. / Journal of Cleaner Production 277 (2020) 123830 5
atmospheric temperatures retrieved at the two pressure levels pL1
and pL2, respectively. The estimated Ta was validated with in-situ
measurements and showed a satisfactory degree of accuracy. More
details on the validation are given in the Appendix.

3.2.2. Estimation of instantaneous Td
Similar toTa, the near-surface Td can be retrieved from themulti-

layer dew-point temperature data provided by the MYD07_L2
product (Jang et al., 2010; Zhu et al., 2017), which is expressed as
follows:

Td ¼ Td L1 �
��
Td L2 � Td L1

� � ðpL2 �pL1Þ
�
,ðps � pL1Þ (3)

where Td is the surface dew-point temperature, and the other pa-
rameters are similar to those given in Eq. (2). Note that the UTCI
requires VP rather than Td as the input. VP (hPa) and Td are
convertible using the following formula (Bolton, 1980):

VP¼6:112,exp½5417:753 , ðð1 =273:15Þ� ð1 = ð273:15þ TdÞÞÞ�
(4)

3.2.3. Estimation of Tmrt
Tmrt determines a large proportion of the energy balance of

human bodies and therefore the thermal comfort (Clark and
Edholm, 1985; Winslow et al., 1936). Tmrt represents all of the
shortwave and longwave radiation from various surfaces (Fanger,
1970). Since it is difficult to quantify the radiation from each di-
rection directly to estimate Tmrt at the satellite scale, here we
resorted to the MENEX model (Bła _zejczyk, 2001, 2007; Bła _zejczyk
and Matzarakis, 2007; Matzarakis et al., 2010), in which Tmrt can
be estimated with the following equation:

Tmrt ¼
�ðRs þ LÞ��εp,s��0:25 � 273:15 (5)

where Rs and L denote the shortwave and longwave radiation
absorbed by the human body, respectively; εp is the emissivity of
the human body surface set as a constant (0.97); and s is the Stefan-
Boltzmann constant. Rs can be calculated using one of three
models: SolDir, SolGlob, and SolAlt (Bła _zejczyk, 2001). We selected
SolAlt to estimate Rs because radiation associated information in
the SolDir and SolGlob models is not easily accessible, while only
the cloud information, which can be provided by the MYD35 cloud
mask product, is required for the SolAlt model. The longwave ra-
diation L received by human bodies can be divided into two parts:
the ground-emitted radiation (Lg) and the atmosphere-emitted
radiation (La), which can be calculated by the following
(Bła _zejczyk and Matzarakis, 2007):

L¼0:5,εp,
�
Laþ Lg

�
(6)

La¼ εsky,s,ðTa þ 273:15Þ4 (7)

Lg ¼ εg,s,ðTs þ 273:15Þ4 (8)

where εg is the surface emissivity, and εsky is the sky emissivity that
can be calculated as (Kenny et al., 2008):

εsky ¼ εa,
�
0:82�0:25 ,10�0:094,VP

�
(9)

where εa is the emissivity of the air set as 0.97 (Park and Tuller,
2011). VP can be obtained from Td using Eq. (4). Here one could
argue that the estimation of Tmrt disregards the elaborate urban
structure (geometry) that can affect the radiation load. However, it
should be noted that (1) this study is focused on the regional scale,
and (2) such information on urban structure is actually contained
within the remotely sensed Ts (with the resolution of 1 km). Further
discussion of this issue is given in Section 4.3.1.

3.2.4. Estimation of Vs

The Vs for each pixel was interpolated based on the measure-
ments obtained at ground-based stations with the Kriging tech-
nique implemented with ArcGIS. The Kriging technique has been
recommended for the spatial interpolation of variables related to
thermal comfort mapping (Bła _zejczyk et al., 2014; Roshan et al.,
2019). We acknowledge that the interpolated Vs may be different
from the true values in cities due to the complex urban geometry.
Nevertheless we still used the interpolated values because (1) it is
difficult estimate the true pixel-based Vs of extensive areas such as
an urban agglomeration; (2) the Vs during heat wave periods is
usually small (Li and Bou-Zeid, 2013); and (3) the calculation of
UTCI is relatively insensitive to Vs (Br€ode et al., 2012b; Pantavou
et al., 2013). Further discussion of this issue is given in Section 4.3.2.

3.2.5. Calculation of UTCI
With the estimation of the aforementioned parameters, the

UTCI can be directly calculated using a look-up table, given as
(Br€ode et al., 2012b):

UTCI¼ f ðTa; Vs; VP; Tmrt � TaÞ þ Ta (10)

According to the magnitude of thermal stress, the calculated
UTCI values can be divided into five categories (Table 2), fromwhich
the physiological response of human thermal comfort can be
assessed (Br€ode et al., 2012b; Jendritzky et al., 2012).

To show typical UTCI maps for the YRDUA during heat wave
periods, we chose the summer of 2018 as themajor study period for
mapping as there were the greatest number of days (i.e., 15 days)
with the daily maximum temperature exceeding 35 �C. To obtain
gap-free maps, remote sensing data during these 15 days were
composited. To illustrate the trajectories in thermal comfort from
2002 to 2018, we further constructed mean UTCI maps during heat
wave periods for three different intervals: 2002e2004, 2009e2011,
and 2016e2018.

3.3. Calculation of UHII

The UHII can be computed using different types of temperature.
Here we calculated the UHIIs quantified by Ts (surface UHI), Ta
(canopy UHI), Td, Tmrt, and UTCI. Three typical cities (Nanjing,
Shanghai, and Hangzhou) with a large urban size and population
were selected to compare UHIIs with different types of
temperature.

Delineation of the urban area and the associated rural back-
ground was required for UHII calculation. The extent of the urban
area was determined according to the land cover type product
(MCD12Q1), while the rural background was designated as a buffer
(with a distance of 15 km) surrounding the urban area boundary
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(Bechtel, 2015; Clinton and Gong, 2013). Based on this delineation,
the mean UHII for each city (Imean) and the pixel-based UHII (Ipixel)
were calculated as follows:

	
Imean ¼ Turban � Trural
Ipixel ¼ Tpixel � Trural

(11)

where Turban and Trural are the mean temperature for urban and
rural areas, respectively; and Tpixel is the temperature of each pixel
within the city.
Fig. 4. Boxplots of the daytime and nighttime UTCI values over different land cover
types.
4. Results and discussion

4.1. Assessment of spatiotemporal patterns in UTCI

4.1.1. Assessment of spatial patterns in UTCI
The spatial patterns in daytime and nighttime UTCI across the

YRDUA during the heat wave periods in 2018 are presented in Fig. 3.
The UTCI tends to be higher within and around urban areas, and it is
also generally higher in the mountains and lower in the plains.
During the day, the UTCI shows a large degree of spatial variation,
with the difference between maximum and minimum values of
13.7 �C. By comparison, the nighttime UTCI variability is relatively
small, especially in the plain areas. The results also reveal that UTCI
values tend to be lower in the coastal areas at night. To better assess
the spatial patterns in UTCI, the following two subsections focus on
the UTCI variations, in light of the different land cover types and
variety of temperatures.

The spatial patterns in UTCI are closely related to local surface
properties such as terrain and land cover type (Fig. 3). The spatial
variations in UTCI are relatively more impacted by land cover type
than by terrain, as the YRDUA is mainly located in plains where the
terrain is relatively flat. To better examine the relationship between
UTCI and land cover type, the UTCI values for each land cover type
were calculated and compared (Fig. 4).

The results show a large degree of variation in UTCI over
different land cover types during the daytime. Among these types,
the urban surfaces that are characterized by high density buildings
and low vegetation coverage have the highest UTCI. The higher
UTCI over urban surfaces can be attributed to their underlying
impervious surfaces that generally exhibit significantly higher Tmrt
and Ta (Benali et al., 2012; Thorsson et al., 2014). However, the
Fig. 3. Spatial distribution of UTCI during daytime (a) and nighttime (b) in the Yangtze Riv

(1) Relationships between UTCI and different land cover types
reasons why forest and grassland correspond to higher UTCI values
can be attributed to two important factors. First, the evapotrans-
piration over vegetation and the sheltering effect of the canopy can
effectively reduce Ts, which can lead to a decrease in Tmrt and Ta and
consequently to a reduction in UTCI. Second, most of the forests and
grasslands are located in mountainous areas with high altitudes
where Td is often lower, which can also lead to a decreased UTCI
(Prihodko and Goward, 1997; Zak�sek and Schroedter-Homscheidt,
2009). The UTCI difference between urban land and forest can be
up to 3.93 �C during the daytime. Strong solar insolation during the
day and the difference in heating rates over these two land cover
types may cause this large contrast. The UTCI values of other land
surface types (mostly natural surfaces located in the plains) have a
smaller degree of spatial variation, which is generally intermediate
between those over urban surfaces and forests.

The UTCI is generally lower during nighttime compared to
daytime, and the spatial variations in nighttime UTCI among
different land cover types are similar to those in daytime UTCI
(Fig. 4). However, compared with the daytime UTCI, there are two
main deviations at night. First, the contrast among different land
er Delta urban agglomeration in the summer of 2018.
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cover types is relatively small (less than 0.5 �C); e.g., the difference
in UTCI between urban surfaces and other land cover types is much
smaller at night than during the day, due mainly to the significantly
reduced nighttime Ts over urban areas compared to that during the
day. Second, the mean UTCI reaches the highest values in wetlands
at night. This may be due to the suppressed cooling process in
wetlands, caused by the larger specific heat capacity of water.

To better assess the spatial patterns in UTCI within urban areas,
the relationships between UTCI and NDVI were further investigated
via a feature space formulated using these two parameters as the x-
and y-coordinates, respectively (Fig. 5). The results show that the
distributions of the points are generally triangular- or trapezoidal-
shaped within the feature space. During the day, the points are
much more scattered than those at night when clusters in areas
with higher UTCIs are observed (Fig. 5b). For both daytime and
nighttime, a small NDVI value usually corresponds to a high UTCI
value, while the UTCI value has a high degree of variation e it can
either be high or relatively lowwhen the NDVI value is high (Fig. 5).
The former phenomenon is anticipated because low vegetation
cover (i.e., with high fraction of impervious surface) often results in
low thermal comfort in urban areas, while the latter phenomenon
more interestingly indicates that the thermal comfort in urban
areas would not be improved by simply increasing the vegetation
coverage. There may be three explanations for this. First, while the
increase in NDVI may truly reduce Ts and Ta, it may also increase Td
(related to relative humidity) and therefore cause a larger variation
in UTCI variation. Second, the NDVI alone is unable to fully char-
acterize the complex surfaces of an urban area, and it is therefore
unable to fully capture the variations in UTCI. Third, a high NDVI
value may correspond to either dense grassland or forest, over
which the UTCI variation can be large.

To examine the impacts of different meteorological variables on
the UTCI, the UTCI was compared with several other types of
temperature measurement. The UTCI is mainly determined by Ta,
Td, and Tmrt, and it is also indirectly affected by Ts that is closely
related to Ta and Tmrt. The comparison of the spatial patterns, in
terms of types of temperature measurement, is shown in Fig. 6.
Despite the general similarities of their patterns, differences also
exist. Ts possesses the highest spatial heterogeneity e the standard
deviation (SD) of Ts is 2.9 �C (1.6 �C) for the day (at night). The
variability in Ta is relatively smaller and similar to that of the UTCI.
The spatial patterns in Td contrast the most with the UTCI: higher Td
values appear mainly around lakes and coastal areas, affected by
the high humidity of these surrounding water bodies. The spatial
pattern of Tmrt is similar to that of Ts during the day, while it is closer
Fig. 5. Relationships between the UTCI and NDVI for urban surfaces during daytime (a)
and nighttime (b) across the YRDUA. The two gray dashed lines contain the range of
the NDVI values; and the red and blue lines respectively represent the upper and lower
boundaries of the shape formulated by the data points, each denoting an urban pixel
with a specific NDVI and UTCI value. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)

(2) Comparison of the UTCI with other types of temperature
to that of Ta at night.
Although the general spatial patterns of Ta are similar to those of

the UTCI (Fig. 6), there are several significant differences (Fig. 7).
The comparison shows that the maximum difference between
these two temperatures during the daytime can reach 8.6 �C
(Fig. 7a). The higher differences in UTCI and Ta primarily appear in
urban and coastal areas, while the differences are quite small in
cropland and high-altitude mountainous areas. Specifically, within
the urban areas of cities such as Shanghai, Hangzhou, Nanjing,
Suzhou, and Wuxi, the UTCI is significantly higher than Ta. At night,
the UTCI is closer to Ta. However, there are large differences be-
tween UTCI and Ta around water bodies, because of the relatively
high Td at night. In addition, the differences between the UTCI and
Ta are much higher around Hangzhou Bay, and further examples of
this phenomenon are given in Section 4.2.

Reference to Fig. 6 shows that the UTCI values are generally
higher in urban areas than for other surfaces, and this phenomenon
can be also observed with respect to the other types of tempera-
ture. Considering the generally lower thermal comfort (higher
temperatures) within cities, we therefore analyzed the relation-
ships between the UTCI and the other types of temperatures over
urban areas in particular (Fig. 8). In general, the correlation be-
tween the UTCI and other temperatures is lower during the day
than at night. The correlation between the UTCI and Ta is the
strongest, with the nighttime R2 of 0.92, indicating that the UTCI is
determined to a high degree by Ta at night. Although Tmrt is also
strongly correlated with the UTCI, Tmrt is significantly lower than its
counterpart. This is because in calculating Tmrt, the human body is
represented as a vertical cylinder, which only receives half of the
surrounding radiation (i.e., any point on the cylinder only ‘sees’ half
of the ground and sky and hemisphere) (Kenny et al., 2008).
Because of the strong spatial heterogeneity of Ts, the UTCI is less
strongly correlated with Ts, especially during the day when the R2 is
only 0.11. Compared with other types of temperature, UTCI has the
lowest correlation with Td, with an R2 of 0.06 and 0.07 for daytime
and nighttime, respectively. One possible explanation may be that
the UTCI is a combined indicator that reflects the status of both the
surface and the atmosphere, while Td only reflects the status of the
atmosphere. Another factor which may contribute to this weaker
correlation is that the UTCI was not calculated directly from Td, but
by VP which is converted from Td.

4.1.2. Assessment of temporal changes in UTCI
The temporal changes in UTCI during the heat wave periods

during three stages (i.e., 2002e2004, 2009e2011 and 2016e2018)
are illustrated in Fig. 9. The results show that the areas with high
UTCI values have expanded gradually during the past two decades,
especially in densely populated regions such as Suzhou, Wuxi, and
Hangzhou Bay. During the day, the areas with increased UTCI values
are generally consistent with those that experienced urban
expansion. At night, the areas with significantly increased UTCI
values are larger, i.e., not confined to urban areas but extending into
the plains with no urban expansion. The change in UTCI at night
generally follows an increasing trend from coastal to inland areas,
probably as a result of the effect of proximity to the ocean.
Furthermore, there is a significant increase in UTCI around Hang-
zhou Bay at night.

Based on the UTCI values during the three stages, the heat stress
was evaluated and classified (Fig. 10). Over these past years, the
YRDUA has experienced a continuous expansion of areas classified
as ‘very strong heat stress’, especially over urban or surrounding
areas; and the increase in heat stress is relatively more significant
from the first (2002e2004) to the second stage (2009e2011) than
from the second to the third stage (2016e2018). During the day, the
heat stress largely changes from ‘strong’ to ‘very strong’ (see



Fig. 6. Comparison of the spatial patterns in UTCI, Ts, Ta, Td, and Tmrt during daytime and nighttime across the YRDUA in the summer of 2018.

Fig. 7. Spatial distribution of the difference between the UTCI and Ta during heat wave periods in the summer of 2018. Areas with a large difference between the UTCI and Ta are
highlighted by an ellipse: Nanjing (Ellipse 1), Suzhou and Wuxi (Ellipse 2), Shanghai (Ellipse 3) and Hangzhou (Ellipse 4), and Hangzhou Bay area (Ellipse 5).
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Table 2), especially for those regions around cities. Only a small
proportion of the regions (mainly mountainous regions) were
affected by moderate heat stress. The temporal variation of heat
stress was more significant at night, and the areas affected by
strong heat stress have been constantly expanding during the
studied interval e the percentage of areas with ‘strong heat stress’
has changed from the minimum to the maximum.

4.2. Estimation of UHII based on UTCI

Our previous analysis has shown that increased UTCIs mainly
occur within or around urban clusters and that they accord well
with areas of urban expansion. To further analyze the urbanization
impacts on the UTCI, we calculated the UTCI-based UHII and
investigated its spatial patterns (Section 4.2.1), and compared them
with the UHIs calculated based on other temperatures, i.e., Ts, Ta,
Tmrt, and Td (Section 4.2.2).

4.2.1. Spatial patterns of UTCI-based UHI
The UTCI-based UHIIs of three typical cities (Nanjing, Shanghai,

and Hangzhou) during the heat waves in 2018 are shown in Fig. 11.
During the day, the averaged UHIIs of these three cities show a
small difference, with values of 1.07, 1.05, and 1.15 �C for Shanghai,
Nanjing, and Hangzhou, respectively. However, the pixel-based
variations in UHII are large within each city; for example, the SD
of UHII in Shanghai is up to 1.19 �C. This is mainly due to the high
degree of heterogeneity of the internal urban structure (or
composition) across Shanghai. For Shanghai, the UHII is usually
higher in the center and northwest of the city, while it is relatively
low in Chongming Island in the northeast and in the riverside
areas. For Nanjing, the higher UHII values mainly appear in the
southern areas with a higher level of urbanization. The spatial
distribution of UTCI-based UHII in Hangzhou differs slightly from
those of the other two cities e the higher UHII values are
concentrated not only within the city center but also in the
southeastern city periphery where the urbanization rate is also
high due to the combined impacts of Hangzhou and its neigh-
boring city of Shaoxing.

At night, the UTCI-based UHII varies greatly among the three
cities. For Nanjing, the SD of the UHII within the urban boundary is
relatively low (0.23 �C at most). For Shanghai, a weak UHII appears
in the southeast, likely reflecting the sea breeze effect from the East
China Sea. Relatively high UHII values occur in the inland north-
west, which is adjacent to areas with a high level of urbanization.
For Hangzhou (also a coastal city), the SD of the UHII is smaller than
that in Shanghai. This is probably because of the ‘wall effect’ created



Fig. 8. Relationships between the UTCI and the other types of temperature in urban areas. (a), (b), (c), and (d) show the correlation of UTCI with Ts, Ta, Td, and Tmrt, respectively.

Fig. 9. Temporal changes in UTCI across the YRDUA during three stages of heat wave periods (2002e2004, 2009e2011, and 2016e2018).
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Fig. 10. Temporal changes among different magnitudes of heat stress quantified by the UTCI across the YRDUA during the three stages (2002e2004, 2009e2011, and 2016e2018)
during daytime (a) and nighttime (b).

Fig. 11. Spatial patterns of UTCI-based UHII in three typical cities. The mean UHII for each city is shown in the upper right corner of each subfigure.
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by the mountains that surround Hangzhou in three directions,
which is capable of slowing down the rate of air circulation (sea
breeze) and accordingly reduce the spatial difference in UHII (Wong
et al., 2011).

4.2.2. Comparison of UHII based on different temperatures
A comparison of the UHII values calculated based on the UTCI, Ts,

Ta, Tmrt, and Td is shown in Fig. 12. During the day, the order of the
UHII values based on different temperatures is similar for all three
cities. The values of UHII are the highest when using Ts, followed by
Tmrt, UTCI, Ta, and then Td. The differences among these UHIIs based
on different temperatures (e.g., Ts-minus Td-based UHII) can be up
to 3.15, 2.75, and 2.54 �C in Hangzhou, Nanjing, and Shanghai,
respectively. The smallest difference among these five types of UHII
appears between the UTCI- and Ta-based UHIIs, supported by the
similarities of these two types of temperature (further explanation
is given in Section 4.1.2).

The nighttime UHIIs based on the five temperatures, by com-
parison, show a large variation between cities. In Nanjing, the order
of UHIIs based on different temperatures is the same as that in
daytime: i.e., Ts, Tmrt, UTCI, Ta, and Td decrease in order. The general
trend in UHII with different types of temperature in Shanghai is
close to that of Nanjing, except that the Td-based UHII in Shanghai is
higher than the Ta-based temperature. The high Td values in eastern
Shanghai, due to the influence of ocean water vapor, probably
contribute to the higher Td-based UHII. In Hangzhou, the Ts-based
UHII is 0.87 �C, close to that of Nanjing. However, the UHIIs calcu-
lated by other temperatures are significantly higher than those of
Nanjing (and Shanghai) e the UTCI-based UHII reaches the highest
for Hangzhou. There are three possible reasons for this finding.
First, the nighttime decrease in UTCI in the western mountains of
Hangzhou is greater than for the other land cover types, causing a
significant decrease in the mean UTCI of the suburbs and conse-
quently a high UTCI-based UHII. Second, Hangzhou is surrounded
bymountains in three directions, which produces a ‘wall effect’ that
can reduce air circulation and consequently decrease nighttime
cooling within the city. Third, due to the influence of water vapor in
the Hangzhou Bay area, Td is often higher and UTCI is sensitive to
water vapor, which in turn induces a higher UTCI and therefore
leads to a higher UTCI-based UHII.



Fig. 12. Comparison of UHIIs based on different types of temperature during heat waves in the summer of 2018 over three typical cities (Nanjing, Shanghai, and Hangzhou) during
daytime (a) and nighttime (b).
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4.3. Discussion

4.3.1. Research significance
We have conducted UTCI mapping across an urban agglomera-

tion during heat wave periods, based mainly on satellite data. We
further analyzed the UTCI-based UHII and compared it with those
calculated based on other types of temperature. Unlike previous
studies of the UTCI (Benali et al., 2012; Park et al., 2014), we have
mapped the UTCI at a scale that balances spatial resolution and
extent: the spatial resolution is sufficiently fine to reveal details of
inner-city areas, while the spatial extent is sufficiently large to
include an urban agglomeration (inter-city variations). In partic-
ular, the UTCI was mapped to provide the thermal comfort status
under extreme heat stress.

Previous studies have focused primarily on analyzing either the
impacts of the internal urban structure on UTCI at a local scale
(Battista et al., 2016; Park et al., 2014; Potchter et al., 2018; Tumini
et al., 2016), or on the impacts of the background climate on UTCI at
a continental or global scale (Di Napoli et al., 2018; ECMWF, 2020;
Pappenberger et al., 2015). However, very few studies have con-
ducted city-scale mapping of UTCI using remote sensing observa-
tions with high spatial resolution (Bła _zejczyk, 2011). One possible
reason is the difficulty in obtaining high-accuracy meteorological
variables such as Ta and Td through remote sensing. Although Ts
retrieved from Landsat data was used previously in calculating the
UTCI (Bła _zejczyk, 2011), remotely sensed Ts played only a subordi-
nate role in mapping, while most of the parameters required for
calculating the UTCI were still obtained from in-situmeasurements
or modelling. To the best of our knowledge, this is the first study to
conduct UTCI mapping mainly by satellite remote sensing. In
addition, the proposed mapping method is easily applicable over
other cities or urban agglomerations, as it is mainly driven by sat-
ellite remote sensing data that are publicly available online. The
associated city-scale UTCI mapping results, by balancing the inner-
city details and inter-city variations, are also potentially useful in a
variety of applications such as tourism consulting, urban planning,
and health risk assessments (Ge et al., 2017; Jendritzky and Tinz,
2009; Park et al., 2014).

In addition to the studies that focused principally on surface
UHIs (denoted by Ts) (Imhoff et al., 2010; Liu et al., 2020; Voogt and
Oke, 2003), canopy UHIs (denoted by Ta) (Hu and Brunsell, 2015) or
Humidex-based UHIs (Ho et al., 2016), we have further provided
UHIs denoted by Tmrt, Td, and finally the UTCI. We analyzed and
compared the city- and pixel-based UHI intensities calculated by
various types of temperature and summarized their similarities and
differences, especially over highly urbanized surfaces. Compared
with the other types of temperature, the UTCI is more closely
related to heat-induced mortality (Di Napoli et al., 2018; Lokys
et al., 2018; Nastos and Matzarakis, 2012), and therefore, the
UTCI-based UHIs may also be useful for evaluating heat-related
risks.

4.3.2. Sensitivity analysis of the input data used for UTCI mapping
Uncertainties of the input parameters can be propagated into

the estimation of UCTI. The approach for retrieving Ts, Ta, Td, and
Tmrt using remote sensing is reliable, as is evidenced by previous
studies (Chen et al., 2016; Famiglietti et al., 2018; Li et al., 2013; Zhu
et al., 2017), and the associated uncertainties for these three pa-
rameters are therefore relatively small. It can be argued that Tmrt is
impacted substantially by urban geometry, which is seemingly
absent from the analysis conducted in the present study. Notably,
however, Ts used to calculate Tmrt already reflects the mean surface
thermal status at a scale of 1 km2 (with a spatial resolution of 1 km),
indicating that the 1-km Ts has already incorporated the informa-
tion on urban geometry. From this perspective, Tmrt has included
the effects of urban geometry at the spatial resolution of 1 km
rather than at the point scale. The interpolation used for obtaining
wind speed (Vs) may be less accurate, especially over heteroge-
neous urban surfaces, and may consequently lead to uncertainties
in estimating UTCI. We therefore conducted an additional sensi-
tivity analysis of Vs for the UTCI estimation.

Considering that the error of Vs with Kriging interpolation is
usually less than 3 m/s (Apaydin et al., 2004; Luo et al., 2008), we
gradually added the errors from 0.5 to 3.0 m/s to the interpolated
Vs, with Ta increasing from 20 to 40 �C (with Tmrt set equal to Ta and
the relative humidity RH set to 50.0% for simplicity) (Fiala et al.,
2012), in order to test the sensitivity of interpolation errors to the
estimated UTCI (Fig. 13). The results show that the impact of the
uncertainty in Vs decreases with increasing Ta. For example, an
additional error of 0.5 m/s in Vs will lead to a deviation of 0.5 �C in
UTCI whenTa is 20 �C, while the impact of themaximum error (3m/
s) on Vs will only lead to a deviation of 0.8 �C in UTCI when Ta is
35 �C. This sensitivity analysis implies that the uncertainty in the
interpolated Vs propagating into the UTCI can be ignored during
heat wave periods (Ta> 35 �C). Nevertheless, to suppress the impact
of Vs, the Weather Research and Forecasting (WRF) model, rather
than simple interpolation, can be used to assist in mapping UTCI
over urban agglomeration.

4.3.3. Future prospects
Although progress has been made in UTCI mapping on the basis

of remote sensing, this study has several limitations. The spatial
resolution of the UTCI maps remains low (1 km), and we only
conducted the mapping under clear sky conditions considering the



Fig. 13. Results of sensitivity analysis of the error in wind speed (Vs) for the estimation
of UTCI with different ambient surface air temperature (Ta).
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availability of remotely sensed Ts. In addition, the impact of urban
geometry has not been fully considered. To improve the spatial
resolution of the UTCI mapping, downscaling methods that are
capable of disaggregating a coarse pixel into subpixels should be
useful (Agam et al., 2007; Hutengs and Vohland, 2016; Xu et al.,
2017; Zhan et al., 2013). To obtain the UTCI under all-weather
conditions, Ts and its related parameters under cloudy conditions
should be reconstructed before being used for mapping, by using
the reconstruction methods of under-cloud Ts developed by the
remote sensing community (Duan et al., 2017; Yu et al., 2014). In
order to better understand the importance of urban geometry,
especially over dense built-up areas, the combination of remote
sensing data with computational fluid dynamics models (e.g., the
ENVI-met model) may be viable (Battista et al., 2016; Park et al.,
2014). Finally, during heat wave periods, the integration of the
UTCI maps with socioeconomic, heat exposure, and disease data
can lead to a better evaluation of health risks that is likely to
improve the extreme weather warning systems and benefit urban
planning (Chen et al., 2018; Hu et al., 2019; McGregor et al., 2015).

5. Conclusions

There is an absence of city-scale UTCI mapping over urban ag-
glomerations and the relationship between the UTCI-based UHII
and those based on other types of temperature is unclear. Conse-
quently, we conducted UTCI mapping across the YRDUA based
mainly on satellite data, and further compared the UHI intensities
calculated with different temperatures (including the UTCI). Our
major findings are summarized as follows.

First, during heat wave periods, the UTCI varies significantly
among different land cover types e with the highest values mostly
occurring within or around the cities. The daytime UTCI is spatially
heterogeneous, while the nighttime UTCI is relatively uniform. The
UTCI has the strongest correlationwith the air temperature, among
all the various types of temperature; however, the difference be-
tween the UTCI and the air temperature may be large over urban
areas, with a maximum difference of 8.6 �C during the day.

Second, the thermal stress quantified by the UTCI has increased
greatly with the rapid urbanization across the YRDUA during the
past two decades. The area affected by ‘very strong’ thermal stress
during the day expanded by 18.2% from 2002 to 2018, with the
areas with prominent expansionmainly occurring around or within
cities. Compared with the daytime case, nighttime heat stress
increased more rapidly, with the area affected by ‘strong’ thermal
stress accounting for the largest proportion (52.7%).

Third, the UHII related results show that the UTCI-based UHII is
lower than those based on the LST (Ts) and mean radiant temper-
ature (Tmrt), but greater than those based on surface air tempera-
ture (Ta) and dew-point temperature (Td). Over Nanjing and
Shanghai, the order of UHIIs based on different temperatures at
night is consistent with that during the day. However, a different
phenomenon occurs in Hangzhou, with the UTCI-based UHII (i.e.,
0.96 �C) significantly higher than those based on the other types of
temperature, probably due to the ‘wall effect’ created by the
mountains surrounding Hangzhou.

We consider that our findings can facilitate the rapid city-scale
assessment of thermal comfort across urban agglomeration dur-
ing heat wave periods. The UTCI maps should also be valuable for
related studies such as heat-related health risk assessment and
regional planning.
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Appendix A. VALIDATION OF RETRIEVED Ta AND Td

The generated surface air temperatures (Ta) and dew-point
temperatures (Td) were compared with in-situ observations. The
validation shown in Fig. A1 demonstrates that the RMSE and bias
for Ta are 1.79 and 0.49 �C, respectively, while those for Td are 2.39
and �0.43 �C, respectively. The accuracy of Td is lower than for Ta,
due mainly to the greater difficulty in estimating near-surface hu-
midity with satellite data (Zhang et al., 2014).

https://www.wunderground.com/


C. Wang et al. / Journal of Cleaner Production 277 (2020) 123830 13
This degree of accuracy is acceptable, especially considering the
difference in spatial scale between the satellite-derived (with a
spatial resolution of 5 km) and in-situmeasurements, as well as the
difference in temporal sampling. The satellite-derived measure-
ments are instantaneous, while the in-situ measurements were
collected every half-hour (Zhu et al., 2017). This level of accuracy is
also satisfactory when compared with that in terms of the esti-
mation of Ta and Td by remote sensing (Benali et al., 2012; Bisht and
Bras, 2010; Famiglietti et al., 2018; Zak�sek and Schroedter-
Homscheidt, 2009).
Fig. A1. Validation of estimated surface air temperature (Ta) (a) and dew-point temperature (Td) (b) versus measured values.
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