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A B S T R A C T   

Parametric kernel-driven models are crucial for operationally adjusting satellite-derived urban land surface 
temperatures (LSTs) obtained at slant angles to hemispherically-representative values. Various parametric 
models have been proposed to simulate urban thermal radiation directionality, but a comprehensive comparison 
of the performances of the published parametric models, especially over a variety of urban surfaces under 
different solar radiation conditions, remains lacking. It is also unknown whether the combination of the available 
hotspot and base shape kernels can be used to derive new parametric models with even better performances 
compared with existing models. Based on both forward-modelling and satellite datasets, here we systematically 
evaluate three single-kernel and eight dual-kernel parametric models. The main findings are as follows: (1) 
Amongst the three single-kernel models, the VIN model has the best overall performance, with an average root- 
mean-square error (RMSE) of 0.79 and 1.35 K, based on forward-modelling and satellite data, respectively. 
However, the ROU and RL models outperform the VIN model when the solar zenith angle is less than 30◦, and in 
particular it has a higher accuracy for hotspot description. (2) The dual-kernel models usually perform better 
than the single-kernel models. Amongst the eight dual-kernel models, those with the hotspot kernel KHotspot_rou 
(used by the ROU model) are more competent than those using KHotspot_vin (obtained from the Vinnikov model) as 
the hotspot kernel. The RVI model, in general, has the highest accuracy, with average RMSEs of 0.49 and 0.77 K 
based on forward-modelling and satellite data, respectively. (3) Compared with the single- and dual-kernel 
models, the multi-kernel models sometimes have better accuracies but the performance improvements are 
relatively limited. We also provide recommendations for model selection under various scenarios. Our systematic 
assessment improves our understanding of urban thermal radiation directionality regimes and potentially en-
ables the improved correction of remotely-sensed urban LSTs, thus helping to advance thermal remote sensing of 
the urban environment.   

1. Introduction 

Land surface temperature (LST) is a key parameter resulting from but 
also modulating energy exchanges between land surfaces and the at-
mosphere. Thus, it has been widely used in various studies related to 

climate change, vegetation monitoring, and the urban environment 
(Voogt and Oke, 2003; Sobrino et al., 2005; Hansen et al., 2010; Li et al., 
2020). Satellite thermal remote sensing is an important technique for 
obtaining the LST at a large scale (Li et al., 2013). However, most sat-
ellite thermal sensors (e.g., MODIS, AVHRR, and SEVIRI) can only 
sample the surface thermal status from a specific viewing angle each 
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time, yet there are large differences amongst the directional radiometric 
land surface temperatures (DRTs) from different observation angles, 
especially during daytime (Hu et al., 2016a; Cao et al., 2019b). Such 
complex thermal anisotropic variations make it challenging to estimate 
hemispherically-representative LSTs unbiased by observation angles (Li 
et al., 2013), and they greatly constrain the application of satellite- 
derived LST products (Cao et al., 2019b). 

An in-depth understanding of the hemispherical characteristics of 
surface thermal radiation directionality (STRD) is critical for eliminating 
the angular impact on satellite-derived LSTs. Comprehensive in-
vestigations of thermal anisotropy have been conducted over natural 
surfaces such as croplands grassland and forest (Cao et al., 2019b). The 
effective thermal anisotropy intensity (i.e., the temperature difference 
between nadir and off-nadir observations) over typical vegetation sur-
faces usually ranges from 2.0 to 4.0 K (or slightly greater), as reported 
based on purely mechanistic forward 3D modelling (hereafter termed 
forward-modelling), as well as on ground-based and remotely- sensed 
observations (Lagouarde et al., 2000; Gastellu-Etchegorry et al., 2004; 
Pinheiro et al., 2004, 2006; Du et al., 2007; Liu et al., 2007; Rasmussen 
et al., 2011; Huang et al., 2012; Guillevic et al., 2013; Duffour et al., 
2015). Forward-modelling strategies often require elaborate surface 
geometry and physical information to capture the thermal anisotropy 
regime. Such strategies are inappropriate for the angular normalization 
of satellite-derived DRTs into the nadir because complex surface infor-
mation is usually unknown. It is also cumbersome and even unfeasible 
for ground-based and remotely-sensed observations to adequately 
characterize the hemispherical characteristics of STRD. For the purposes 
of angular normalization and inversion, simple but effective modelling 
strategies are therefore required. Parametric kernel-driven models can 
meet such needs when only a few DRTs are available (Cao et al., 2019b). 
The current kernel-driven STRD models can be generally grouped into 
two categories (Cao et al., 2021). The first category is adapted from the 
kernel-driven modelling framework developed for the visible and near- 
infrared (VNIR) spectra, which usually includes a geometric optic 
kernel, a radiative transfer kernel, and an isotropic kernel, i.e., the 
regular kernel-driven bidirectional reflectance distribution function 
(BRDF) models yet revised by replacing the reflectance with DRT (e.g., 
the Ross-Li series model) (Peng et al., 2011; Ren et al., 2014; Hu et al., 
2016b, 2017; Liu et al., 2018; Cao et al., 2019a, 2021). The second 
category is initiated from the general thermal infrared (TIR) kernel- 
driven modelling framework (Cao et al., 2021), which often contains a 
base shape kernel, a hotspot kernel, and an isotropic kernel. Compared 
with the first category, the second category is specifically designed for 
STRD simulation; and it includes newly designed kernels, e.g., the Vin-
nikov model (Vinnikov et al., 2012), the Roujean-Lagouarde (RL) model 

(Lagouarde and Irvine, 2008; Duffour et al., 2016), and the kernel- 
hotspot model that combines the Vinnikov and RL models (Ermida 
et al., 2018a, 2018b). 

Compared with relatively homogeneous natural land surfaces that 
are usually covered by vegetation, soil and snow (or ice), urban surfaces 
are highly heterogeneous with a greater variety of surface thermal 
properties and a more prominent 3D structure that results in a compli-
cated shading pattern amongst urban surface objects (e.g., buildings) 
(Oke et al., 2017; Mao and Li, 2020). The intensity of urban thermal 
radiation directionality (UTRD) is greater than that of natural surfaces. 
The UTRD intensity can even reach up to 10.0 K or more during daytime 
(Voogt and Oke, 1998; Voogt, 2008; Lagouarde et al., 2004, 2010, 2012; 
Yu et al., 2006; Zhan et al., 2012; Zhao et al., 2012; Hu et al., 2016a). 
Likewise, there are generally two groups of kernel-driven models used 
for UTRD simulation. The first group is a straightforward application of 
the available kernel-driven models used for natural surfaces. For 
example, the Vinnikov and RL models have also been shown to be 
effective for simulating UTRD (Lagouarde and Irvine, 2008; Duffour 
et al., 2016; Jiang et al., 2018). Similarly, the urban surface emissivity 
anisotropy (USEA) model, which was developed based on the Vinnikov 
model but contains a revised semi-empirical base shape kernel, has been 
illustrated applicable for the UTRD simulation (Sun et al., 2015). The 
second group conceives new kernels based on a particular consideration 
of urban geometry. For example, Wang et al. (2018a, 2018b, 2020) and 
Wang and Chen (2019) designed the GUTA series models (i.e., the GUTA 
-sparse, GUTA -osg, GUTA -dense, and GUTA -T models) for urban sur-
faces with different building densities. 

For vegetation surfaces, the available models for simulating thermal 
anisotropy (e.g., the BRDF-based, RL, and Vinnikov models) have been 
comprehensively compared under numerous scenarios (Ermida et al., 
2018b; Liu et al., 2018, 2020; Cao et al., 2019a). For urban surfaces, 
however, only a small number of parametric models have been evalu-
ated, and the comparisons have only been conducted under a few sce-
narios with limited representation of urban surfaces and observation 
times (Sun et al., 2015). Previous investigations have shown that (1) 
new parametric kernel-driven models can be derived directly by 
combining the available hotspot and base shape kernels (Cao et al., 
2021); and (2) the UTRD regime depends substantially on urban surface 
morphology and observation time (i.e., solar radiation conditions) 
(Voogt, 2008; Krayenhoff and Voogt, 2016; Hu and Wendel, 2019). We 
therefore identify the following two major issues for UTRD simulation 
with parametric models: First, it remains unclear whether there exist 
new kernel-driven models for UTRD simulation with even better per-
formances based on combining all the available hotspot and base shape 
kernels. Second, we lack a comprehensive assessment of the perfor-
mances of all of the available parametric models under scenarios that 
incorporate an adequate range of urban morphology and solar radiation 
conditions. 

To fill these knowledge gaps, in this study we screen all of the pub-
lished kernels suitable for UTRD simulation, from which six new para-
metric models are obtained. With both forward-modelling and satellite 
data, we then conduct a systematic performance assessment of eleven 
parametric models (including five existing models and six new models) 
for daytime UTRD simulation. This assessment can assist practitioners in 
choosing the most appropriate models under different scenarios, as well 
as in designing parametric models with even better performance in the 
future. 

2. Datasets 

Both forward-modelling and satellite datasets are used to assist 
model assessments; both provide adequate DRTs at different angles and 
are therefore suitable for model comparison. Note that the airborne 
dataset is not included in this study, and that further clarification is 
provided in Section 4.4.2. 

Symbols 

T(θs, θv, φ) directional radiometric temperature 
T0 radiometric temperature at nadir 
fiso isotropy coefficient 
fHotspot hotspot kernel coefficient 
fBaseShape base shape kernel coefficient 
KHotspot hotspot kernel 
KBaseShape base shape kernel 
θs solar zenith angle 
θv viewing zenith angle 
φs solar azimuth angle 
φv viewing azimuth angle 
φ relative azimuth angle between the sun and sensor 
D angular distance between the sun and sensor 
ξ phase angle related to the sun-surface-sensor position 
k scale factor  
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2.1. Forward-modelling datasets 

Forward-modelling datasets have been widely used for investigating 
UTRD, as well as for assessing parametric models (Duffour et al., 2015; 
Krayenhoff and Voogt, 2016; Dyce and Voogt, 2018; Wang et al., 2018a, 
2018b, 2020; Wang and Chen, 2019; Hu and Wendel, 2019; Cao et al., 
2019a). The forward-modelling datasets were produced using three 
major steps: 

2.1.1. Step (1): Design of urban surface models (USMs) 
The UTRD regime is closely related to urban morphology (Hu and 

Wendel, 2019). To represent the characteristics of typical urban surfaces 
as comprehensively as possible, nine USMs (termed USM01 to USM09, 
see Fig. A1 in Appendix A) were designed according to the local climate 
zone (LCZ) concept (Stewart and Oke, 2012). These nine USMs are 
exemplified with different building densities (densely or sparsely 
distributed) and building heights (high, low, or mixed heights), which 
were created using 3ds-Max software. 

2.1.2. Step (2): Simulation of component temperatures 
The Envi-met software extensively used in urban environment 

studies (Chow et al., 2011) was used to simulate the component tem-
peratures of these nine USMs. The RMSE of the component temperature 
(including surface and wall temperatures) simulated by the Envi-met 
software has been demonstrated to range from 1.0 to 2.0 K (Yang 
et al., 2013; Huang et al., 2015). Two typical dates during summer and 
winter in Nanjing (118.54◦E, 31.56◦N), July 29, 2015 (summer) and 
January 15, 2016 (winter), were selected for the simulation. The 
simulation was initialized with input parameters (including meteoro-
logical, soil, and building material data) identical to those of Jiang et al. 
(2018), and the simulation was run for 12 h from 06:00 to 18:00 local 
time (UTC + 8). The urban surfaces are divided into 16 components: 
trees, grass, bare ground, roofs, and east-, west-, south-, and north-facing 
walls under both sunlit and shaded situations (Zhan et al., 2012). The 
component surface temperatures were then estimated as the averages of 
the same component. 

2.1.3. Step (3): Generation of all-direction DRTs 
By combining the component temperatures simulated in Step (2), 

CoMSTIR (Computer Model to Simulate the Thermal Infrared Radiation 
of 3-D urban targets) was used to obtain the all-direction DRTs. CoM-
STIR is a forward sensor view model for UTRD simulation, with typical 
urban surfaces being divided into 10 components (Wang et al., 2020); it 
has been demonstrated to have acceptable accuracy (represented by 
RMSE) of ~1.0 K based on in-situ data (Ma et al., 2013). For this study, 
three typical observation times (including the typical overpass times of 
most sun-synchronous polar orbiters) were selected to simulate the 
daytime DRTs of all nine USMs: 11:00, 13:00, and 15:00 on Jul. 29, 2015 
(summer) and Jan. 15, 2016 (winter). The viewing zenith angles (VZAs) 
were set from nadir (0◦) to 60◦ with an increment of 10◦, covering the 
VZAs of most polar orbiters. The viewing azimuth angles (VAAs) 
(0–360◦) were set with an increment of 30◦. The sensor observation 
distance and the sensor field of view (FOV) were set as 500 m and 20◦, 
respectively, where the FOV effect can be ignored (Zhan et al., 2010). 

Following these steps, forward-modelling datasets include 54 sce-
narios (nine USMs and three cases for summer and winter respectively), 
each with 73 DRTs. To assess the impact of building height on the 
comparison of model performance, we divided the nine USMs into four 
categories, including high-rise (USM01 and USM04, 12 scenarios), mid- 
rise (USM02 and USM05, 12 scenarios), low-rise (USM03, USM06, 
USM08, and USM09, 24 scenarios), and hybrid-rise (USM07, 6 sce-
narios). To assess the influence of observation season on model com-
parison, these 54 scenarios were divided into summer (27 scenarios) and 
winter (27 scenarios). 

In addition to building height and observation season, the UTRD can 
also be impacted by controls such as street orientation (related to urban 

surface morphology) and city latitude (related to solar radiation) 
(Voogt, 2008; Lagouarde et al., 2010; Krayenhoff and Voogt, 2016; 
Wang et al., 2018a; Hu and Wendel, 2019). Similar to Steps (1) to (3), we 
therefore also generated two supplementary datasets to assess the im-
pacts of street orientation and city latitude on model comparison. To 
assess the impact of street orientation on model comparison, the original 
USM02 (with south-to-north streets) was rotated clockwise by 15◦, 30◦, 
45◦, 60◦, and 75◦ to obtain five new sub-USMs. They are termed USM02- 
15◦, USM02-30◦, USM02-45◦, USM02-60◦, and USM02-75◦, respec-
tively, with the original urban surface model termed USM02-0◦. A total 
of 36 scenarios were generated to assess the impact of street orientation. 
To assess the impact of city latitude (i.e., solar zenith angle variation), 
we took USM01 as an example and set the forward-modelling at another 
four latitudes corresponding to four cities, i.e., 45.93◦N (Harbin), 
40.08◦N (Beijing), 26.08◦N (Fuzhou), and 20◦N (Haikou), in addition to 
31.56◦N (Nanjing). A total of 30 scenarios were produced to assess the 
impact of city latitude. 

2.2. Satellite datasets 

In addition to forward-modelling datasets, satellite-derived anisot-
ropy datasets can provide observational evidence to support the evalu-
ation of parametric model performances. However, when compared 
with forward-modelling, it is more difficult to simultaneously obtain 
multi-angle LST data from direct satellite observations. The combination 
of two or more geostationary sensors (e.g., GOES-EAST and GOES- 
WEST) with fixed observation angles is applicable for investigating the 
thermal anisotropy over natural surfaces (Vinnikov et al., 2012). 
Nevertheless, the spatial resolutions of most geostationary thermal 
sensors (usually ~5 km) are too coarse relative to the size of a city. 
Along-track polar-orbiters with observation geometry similar to the 
Along Track Scanning Radiometer − 2 can acquire finer (with the reso-
lution of ~1 km) multi-angle LST observations quasi-simultaneously, 
but the angle number remains limited for model performance assess-
ments. Cross-track polar-orbiters such as MODIS also sample the surface 
with a spatial resolution (also ~1 km) which is sufficiently fine to 
observe cities, and with wider fields of view that enable the acquisition 
of sufficient multi-angle thermal data with various VZAs from nadir to 
±65◦. However, MODIS is unable to acquire multi-angle LSTs simulta-
neously – its multi-angle thermal data are obtained from temporally- 
adjacent days (Wan, 2006) and consequently the original MODIS LSTs 
cannot be directly used for model evaluations (Cao et al., 2019a). 

The non-synchronization of multi-angle MODIS LSTs can be partly 
overcome by the strategy proposed by Hu et al. (2016a). To eliminate 
LST variations induced by weather changes and differences in atmo-
spheric path radiance on adjacent days, this strategy uses homogeneous 
water bodies adjacent to cities, which exhibit minimal thermal anisot-
ropy, as a reference. With this strategy, the LSTs that are only related to 
the observation angle (i.e., the quasi-simultaneous multi-angle LSTs) can 
be obtained. This strategy consists of two steps (Hu et al., 2016a): (1) 
Calculation of the LST difference (∆LST) and air temperature difference 
(ΔTair) between land surfaces and water bodies; and (2) generation of 
the quasi-simultaneous multi-angle MODIS LSTs (∆LST∆Tair) by sub-
tracting the anomaly of ΔTair from ΔLST with a magnitude adjustment in 
a time series. 

In this study, the quasi-simultaneous multi-angle MODIS LSTs (i.e., 
the ∆LST∆Tair dataset) produced by Hu et al. (2016a) over Chicago 
(87.6◦W, 41.9◦N) and New York City (74◦W, 40.7◦N) were directly 
employed for model comparisons. For these two cities, the LST products 
used are the daytime L2 products (i.e., the MOD11_L2 from Terra and 
MYD11_L2 from Aqua) acquired at ~11:00 (Terra day) and 13:00 (Aqua 
day) local time, each day. The MODIS LSTs were collected within the 
growing season (May to September) from a 10-year period 
(2003− 2012), mostly considering that (1) urban vegetation is relatively 
stable in the growing season, and (2) that observation and retrieval noise 
can be significantly reduced by using the average of data for a 10-year 
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period. 
For these MODIS DRTs, the VAAs are relatively fixed while the VZAs 

vary from − 65◦ (westerly) to +65◦ (easterly) (see Fig. A2 in Appendix A 
for the Chicago case). The MODIS DRTs were further averaged according 
to the VZA in each 5◦. The corresponding solar positions are also the 
averages during the corresponding observational periods for each 2-h 
overpass window (see Fig. A2 in Appendix A for the Chicago case). To 
further evaluate the impact of urban morphology on model perfor-
mance, the MODIS DRTs were categorized into nine groups by urban 
fraction (urban%), including (0, 10%), [10%, 20%), [20%, 30%), …, 
[70%, 80%), [80%, 100%]. Altogether, the MODIS DRT dataset consists 
of 36 scenarios (9 groups by urban fraction, 2 observation times during 
the day, and 2 cities), each with DRTs at 27 different VZAs. For this 
dataset, the maximum daytime thermal anisotropy intensity can be up to 
9.0 K (Hu et al., 2016a). Readers can refer to Hu et al. (2016a) for more 
information about the 36 DRT lines. 

3. Summary of kernel-driven models and schemes for model 
comparison 

This section summarizes the selected parametric kernel-driven 
models for comparison, as well as the associated comparison schemes. 
According to the general TIR kernel-driven modelling framework pro-
posed by Cao et al. (2021), we mainly discuss four base shape kernels 
and three hotspot kernels suitable for UTRD simulation (see Section 3.1). 
By integrating these available hotspot and base shape kernels, eleven 
parametric models with either single or dual kernels were obtained, 
including six new models and five existing models (see Section 3.2). We 
finally provide three schemes to evaluate these parametric models (see 
Section 3.3). 

3.1. Available parametric kernels for UTRD simulation 

The general TIR kernel-driven modelling framework can be written 
as follows (Cao et al., 2021): 

T(θs, θv,φ) = fiso + fBaseShape⋅KBaseShape + fHotspot⋅KHotspot (1)  

where T(θs, θv, φ) represents the DRT, wherein θs, θv, and φ are the solar 
zenith angle (SZA), viewing zenith angle (VZA), and sun-sensor relative 
azimuth angle, respectively; fiso, fBaseShape, and fHotspot are the isotropy 
coefficient, base shape kernel coefficient, and hotspot kernel coefficient, 
respectively; and KBaseShape and KHotspot are the base shape and hotspot 
kernels used to simulate the base shape and shadowing effect anisot-
ropy, respectively. 

According to the general TIR kernel-driven modelling framework, we 
discuss four base shape kernels (see Section 3.1.1) and three hotspot 
kernels (see Section 3.1.1.3) suitable for UTRD simulation. Noting that 
we disregarded the Li-related kernels (i.e., the Li-sparse (Wanner et al., 
1995), Li-dense (Wanner et al., 1995), upgraded Li-sparseR (Lucht et al., 
2000), and Li-transit kernels (Yang et al., 2002)) because they were 
designed for vegetation canopy, contain vegetation structure parameters 
(e.g., the crown size), and are consequently inappropriate for urban 
surfaces characterized primarily by cuboid-like buildings. 

3.1.1. Four base shape kernels suitable for UTRD simulation 

3.1.1.1. Ross-thick kernel (KBaseShape_thick). The Ross-thick kernel (KBase-

Shape_thick) was proposed to describe the volume scattering of dense 
vegetation (Roujean et al., 1992; Jupp, 2000). KBaseShape_thick is appli-
cable as a base shape kernel for simulating the thermal anisotropy of 
urban surfaces with dense vegetation. The formula of KBaseShape_thick is 

given as: 
⎧
⎪⎨

⎪⎩

KBaseShape thick(θs, θv,φ) =
(π/2 − ξ)cosξ + sinξ

cosθs + cosθv
−

π
4

cosξ = cosθscosθv + sinθssinθvcosφ
(2)  

where ξ is the phase angle related to the sun-surface-sensor position 
(Roujean et al., 1992). The meanings of the angle-related parameters in 
Eq. (2) are identical to those given in Eq. (1). The KBaseShape_thick is 
determined by VZA, VAA, and sun-sensor relative azimuth angle. Its 
kernel values along the solar principle plane (SPP) with SZA = 30◦ and 
SAA = 180◦ are illustrated in Fig. 1a. 

3.1.1.2. Ross-thin kernel (KBaseShape_thin). The Ross-thin kernel (KBase-

Shape_thin) is similar to KBaseShape_thick but was designed for a vegetation 
canopy with a relatively low leaf area index (Wanner et al., 1995; Jupp, 
2000). KBaseShape_thin can be used as a base shape kernel for simulating 
the thermal anisotropy of urban surfaces with sparse vegetation. The 
formula of KBaseShape_thin is given as: 

KBaseShape thin(θs, θv,φ) =
(π/2 − ξ)cosξ + sinξ

cosθscosθv
−

π
2

(3) 

The kernel values of KBaseShape_thin along the SPP with SZA = 30◦ and 
SAA = 180◦ are given in Fig. 1b. 

3.1.1.3. Base shape kernel of the Vinnikov model (KBaseShape_vin). The 
semi-empirical Vinnikov model was proposed by Vinnikov et al. (2012) 
for simulating the thermal anisotropy of natural surfaces. The capability 
of the Vinnikov model for simulating vegetation thermal anisotropy was 
further confirmed (Duffour et al., 2016; Ermida et al., 2018b; Liu et al., 
2018; Cao et al., 2019a). It has been recently shown applicable for UTRD 
simulation (Jiang et al., 2018). The base shape kernel (denoted by 
KBaseShape_vin) of the Vinnikov model can be written as follows: 

KBaseShape vin(θv) = 1 − cosθv (4) 

The KBaseShape_vin is only VZA-dependent. Its kernel values along the 
SPP with SZA = 30◦ and SAA = 180◦ are displayed in Fig. 1c. 

3.1.1.4. Base shape kernel of the USEA model (KBaseShape_uea). Based on 
the Vinnikov model, Sun et al. (2015) proposed the USEA model to 
better simulate UTRD by replacing the original base shape kernel with a 
revised kernel KBaseShape_uea, given as follows: 

KBaseShape uea(θv) = sinθv (5) 

Similar to KBaseShape_vin, the KBaseShape_uea is also only VZA-dependent. 
Its kernel values along the SPP with SZA = 30◦ and SAA = 180◦ are 
demonstrated in Fig. 1c. 

3.1.2. Three hotspot kernels suitable for UTRD simulation 

3.1.2.1. Roujean kernel (KHotspot_rou). The Roujean model (hereafter 
termed the ROU model) was originally developed by Roujean et al. 
(1992) for BRDF simulation and was later proved capable of serving as a 
hotspot kernel for simulating vegetation thermal anisotropy. The Rou-
jean kernel (given as KHotspot_rou) is obtained based on the existence of 
identical long wall-like protrusions (similar to buildings) within a scene. 
The ROU model has not previously been used for UTRD simulation but 
we incorporate this model for comparison because its assumption of 
wall-like protrusions within a scene makes it suitable for UTRD simu-
lation. The KHotspot_rou can be written as follows:  
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where D is the angular distance between the sun-sensor. The hotspot 
position simulated by KHotspot_rou is consistent with the solar location; 
and the KHotspot_rou values along the SPP with SZA = 30◦ and SAA = 180◦

are given in Fig. 1d. 

3.1.2.2. Hotspot kernel of the Vinnikov model (KHotspot_vin). The hotspot 
kernel (denoted by KHotspot_vin) of the Vinnikov model can be expressed 
as follows: 

KHotspot vin(θs, θv,φ) = sinθvcosθssinθscos(θs − θv)cosφ (7) 

The KHotspot_vin values along the SPP are demonstrated in Fig. 1e. As a 
pure semi-empirical kernel, the hotspot position (i.e., the maximum 
kernel value) simulated with KHotspot_vin (i.e., VZA = 60◦ and VAA =
180◦) can be inconsistent with the solar position (i.e., SZA = 30◦ and 
SAA = 180◦). 

3.1.2.3. Hotspot kernel of the RL model (KHotspot_rl). The parametric 
hotspot model initially used for BRDF simulation (Roujean, 2000) was 
demonstrated to be capable of simulating UTRD (Lagouarde and Irvine, 
2008; Duffour et al., 2016). Under the condition that the DRT at nadir 
(T0) is known, the RL model contains two parameters: the DRT differ-
ence between nadir and hotspot (ΔTHS) and the scale factor (k). It is 
defined by the following formula: 

⎧
⎪⎨

⎪⎩

T(θs, θv,φ) = fiso + fHotspot⋅KHotspot rl

KHotspot rl =
e− kD − e− ktanθs

1 − e− ktanθs

(8) 

The kernel values of KHotspot_rl along the SPP with different k values 
(corresponding to different hotspot widths) are demonstrated in Fig. 1f. 
Similar to KHotspot_rou, the hotspot position simulated with KHotspot_rl is 
consistent with the solar position. 

3.2. Illustration of 11 parametric kernel-driven models 

After screening the usable kernels as introduced in Section 3.1, we 
obtained six candidates, including two hotspot kernels (KHotspot_rou and 
KHotspot_vin) and four base shape kernels (KBaseShape_thin, KBaseShape_thick, 
KBaseShape_vin, and KBaseShape_uea). Here, KHotspot_rl was treated individu-
ally and did not participate in the kernel combination. This is mainly 
because KHotspot_rl possesses a specific unknown parameter (i.e., the scale 
factor k), while the other six candidates are only determined by the sun- 
surface-sensor geometry (i.e., θs, θv, and φ). 

According to the general TIR kernel-driven modelling framework as 
given by Eq. (1), we obtained 11 parametric kernel-driven models, 
including three single-kernel models and eight dual-kernel models 
(Table 1). To ensure consistency in the abbreviations of the parametric 
models, we used 3-letter abbreviations for all 10 models except the RL 
model. The abbreviation of a single-kernel model is given as the first 
three letters of the last name of the associated first author, e.g., the 

Fig. 1. Kernel values along the solar principle plane (SPP), with the SZA and SAA designated respectively as 30◦ and 180◦ for demonstrating a typical scenario. The 
negative and positive VZAs correspond to the VAA being equivalent to 180◦ and 0◦, respectively; and the solid straight and dashed lines represent the VZA being 
equal to 0◦ (i.e., nadir) and − 30◦ (i.e., the designated sun position), respectively. (a) and (b) show the kernel values for KBaseShape_thick and KBaseShape_thin, respectively; 
(c) illustrates the kernel values for KBaseShape_vin and KBaseShape_uea, respectively; (d) and (e) display the kernel values for KHotspot_rou and KHotspot_vin, respectively; and 
(f) demonstrates the kernel values for KHotspot_rl with different scale factors (k = 2, 5, and 10). 

⎧
⎪⎨

⎪⎩

KHotspot rou(θs, θv,φ) =
1

2π [(π − φ)cosφ + sinφ ]tanθstanθv −
1
π (tanθs + tanθv + D)

D =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

tan2θs + tan2θv − 2tanθstanθvcosφ
√ (6)   
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Roujean model is abbreviated as the ROU model. The abbreviation of a 
dual-kernel model consists of the first letter of the name of the used 
hotspot kernel (i.e., ‘R' stands for KHotspot_rou, ‘V' stands for KHotspot_vin) 
plus the first two letters of the name of the used base shape kernel (i.e., 
‘TH’ stands for KBaseShape_thin, ‘TK’ stands for KBaseShape_thick, ‘VI’ stands 
for KBaseShape_vin, and ‘US' stands for KBaseShape_uea). According to this 
abbreviation rule, the Vinnikov model, for example, can be abbreviated 
as the VVI model; and the USEA model can be abbreviated as the VUS 
model. 

Amongst these 11 parametric models, only three have been tested for 
UTRD simulation over typical urban surfaces with buildings: the RL 
model (Duffour et al., 2016), the VVI model (tested in Jiang et al. 
(2018)), and the VUS model (tested in Sun et al. (2015)); two (i.e., the 
RTH and RTK models) will be tested for the UTRD simulation for the first 
time; the remaining six are newly derived models that will be tested for 
UTRD simulation, including two single-kernel and four dual-kernel 
models. The two new single-kernel models use hold one hotspot 
kernel with the base shape kernel disregarded (Vinnikov et al., 2012), i. 
e., KHotspot_rou for the ROU model and KHotspot_vin for the VIN model 
(Table 1). The four new dual-kernel models incorporate one hotspot 
kernel and one base shape kernel. They include the VTH, VTK, RVI, and 
RUS models (Table 1). Possible issues related to this empirical kernel 
combination will be discussed in Section 4.4.2. 

Compared with the single- and dual-kernel models, the multi-kernel 
models characterized by more parameters are expected to have higher 
accuracies; however, they are also expected to have a less stable per-
formance when the number of input DRT is limited, which is the case for 
satellite thermal observations. Therefore, in this study we focused 
mainly on the assessments of single- and dual-kernel models. Never-
theless, we provided a quantitative analysis and discussion of the per-
formances of multi-kernel models. Additional details of the formulae 
and performances of multi-kernel models are therefore not provided in 
Section 3 but in Section 4.4.1 and Appendix B. 

3.3. Schemes for model comparison 

The performances of the 11 kernel-driven models were assessed by 
the following three schemes. The first scheme (termed Scheme #1 
hereafter) employed all the DRTs simulated by CoMSTIR to test the 
performances of parametric models. The model performances were 
evaluated by comparing the simulated DRTs provided by the parametric 
models and the forward-modelling dataset (more details are given in 

Section 4.1). This is the major scheme used in this study as the forward- 
modelling dataset provides abundant observation angles and scenarios 
that ensure a relatively comprehensive assessment. Note that quantita-
tive evaluation of the performances of the multi-kernel models is also 
conducted under Scheme #1. 

The second scheme (Scheme #2) is similar to Scheme #1 except that 
all the MODIS DRTs along the scanning line from east to west were used 
(refer to Section 4.2). The evaluations under Scheme #2 can provide a 
reference for the application of parametric models to actual satellite 
LSTs: e.g., the angular normalization of urban satellite LSTs. Notably, 
the number of observation angles and scenarios for Scheme #2 are less 
than that for Scheme #1, so this scheme is used to supplement Scheme 
#1. 

The third scheme (Scheme #3) tested model sensitivity (or stability) 
with only a limited number of DRTs from the forward-modelling dataset 
(see Section 4.3). Scheme #3 is based on the forward-modelling rather 
than the satellite datasets because the former provides more data for 
model sensitivity assessments. The limited DRT inputs used to fit para-
metric models are determined using the following two steps. The first 
step is to determine the number of DRT inputs each time. The single- 
kernel ROU and VIN models require at least two DRTs to solve the un-
known parameters, while the RL model and the dual-kernel models 
require at least three DRTs; in other words, the number of DRT inputs 
should be equal to or greater than three. We added one more DRT input 
each time (i.e., therefore there are four DRT inputs) to increase the 
model solvability. The second step is to determine the angular positions 
of the four DRT inputs within the upper hemisphere. In general, the 
angular positions of these four DRTs were generated randomly. How-
ever, we further complied with the following two rules to refine the 
random selection, in order to avoid systematic errors in model inversion 
caused by the possible aggregation of the four DRTs once the entirely 
random selection was used. (i) The VZA for of the four DRTs should be 
different; and (ii) the VAA difference between two adjacent DRTs should 
be 60–120◦; e.g., if the VAA of the first DRT is between 0 and 30◦, those 
of the other three DRTs are 90–120◦, 180–210◦, and 270–300◦. In total, 
we generated 8100 groups of four-DRTs based on the forward-modelling 
dataset (i.e., 54 scenarios, 150 four-DRT groups for each scenario). 

Three indicators were used for assessing model performance, 
including the mean absolute error (MAE), root mean square error 
(RMSE), and distance of hotspots (DHS). Amongst these, the DHS is a 
newly-defined indicator, which can be calculated by the spherical dis-
tance formula (i.e., the Great-circle distance formula) in geometry 
(Bullock, 2007). The DHS is used to evaluate the model capability for 
simulating hotspot location. The DHS is calculated as the angular dis-
tance between the ‘reference’ and fitted hotspots, with the following 
formula: 

DHS = arccos
[
cos(π/2-θr)cos

(
π
/

2-θf
)
cosφr f + sin(π/2-θr)sin

(
π
/

2-θf
) ]

(9)  

where θr and θf are the VZAs of the reference and fitted hotspots, 
respectively; and φr_f is the relative VAA between these two hotspots. 

4. Results and discussion 

4.1. Comparison with forward-modelling data 

4.1.1. Comparison of the overall performance of parametric models 
The overall performances of the 11 parametric kernel-driven models 

under Scheme #1 (with all DRTs used as input) are shown in Fig. 2. The 
results show that the dual-kernel models generally have a higher accu-
racy and are more robust than the single-kernel models. The average 
RMSE of the dual-kernel models is ~0.30 K less than that of the single- 
kernel models, and the error distributions of the dual-kernel models are 
more concentrated (Fig. 2). The better performance of the dual-kernel 
models for UTRD simulation can be attributed to their combination of 

Table 1 
Summary of the 11 kernel-driven models.  

Model type Model 
name 

Model expression 

Single-kernel 
models 

ROUb T(θs,θv,φ) = fiso + fHotspot ⋅ KHotspot_rou 

VINb T(θs,θv,φ) = fiso + fHotspot ⋅ KHotspot_vin 

RLa T(θs,θv,φ) = fiso + fHotspot ⋅ KHotspot_rl 

Dual-kernel 
models 

RTHa T(θs,θv,φ) = fiso + fHotspot ⋅ KHotspot_rou + fBaseShape 

⋅ KBaseShape_thin 

VTHb T(θs,θv,φ) = fiso + fHotspot ⋅ KHotspot_vin + fBaseShape ⋅ 
KBaseShape_thin 

RTKa T(θs,θv,φ) = fiso + fHotspot ⋅ KHotspot_rou + fBaseShape 

⋅ KBaseShape_thick 

VTKb T(θs,θv,φ) = fiso + fHotspot ⋅ KHotspot_vin + fBaseShape ⋅ 
KBaseShape_thick 

RVIb T(θs,θv,φ) = fiso + fHotspot ⋅ KHotspot_rou + fBaseShape 

⋅ KBaseShape_vin 

VVIa T(θs,θv,φ) = fiso + fHotspot ⋅ KHotspot_vin + fBaseShape ⋅ 
KBaseShape_vin 

RUSb T(θs,θv,φ) = fiso + fHotspot ⋅ KHotspot_rou + fBaseShape 

⋅ KBaseShape_uea 

VUSa T(θs,θv,φ) = fiso + fHotspot ⋅ KHotspot_vin + fBaseShape ⋅ 
KBaseShape_uea 

Superscripts ‘a’ and ‘b’ respectively represent the five published and six newly- 
derived parametric models. 
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a hotspot kernel (which is also used by the single-kernel models) and a 
base shape kernel. Deviations in performance are also observed within 
the dual- or single-kernel model categories. 

Amongst the single-kernel models, the VIN model has the highest 
accuracy (RMSE: 0.79 K), followed by the ROU and RL model (RMSE of 
0.88 and 0.89 K, respectively). The superiority of the VIN model over the 
two other single-kernel models lies in its better performance in model-
ling the DRTs over the angular ranges of 55–60◦/120–150◦ and 20–40◦/ 
0–60◦ (VZA/VAA) (see Fig. 3). 

Amongst the dual-kernel models, the RVI model has the lowest RMSE 
(0.49 K), followed by the RTH and RTK models (the RMSEs are both 
0.50 K). In addition, once given a determined base shape kernel, the 
dual-kernel models with the hotspot kernel KHotspot_rou are generally 
better than those with the hotspot kernel KHotspot_vin. For example, when 

KBaseShape_thick is taken as the base shape kernel, the RTK model with 
KHotspot_rou (the RMSE is 0.50 K) performs better than the VTK model 
with KHotspot_vin (the RMSE is 0.60 K). The better performance of the 
KHotspot_rou-based dual-kernel models is the most significant within the 
angular range of 50–60◦/255–285◦ (VZA/VAA) (Fig. 4). The superiority 
of KHotspot_rou may be due to its assumption that surface objects are long- 
walled protrusions, which coincides well with the geometry of typical 
urban surfaces dominated by rectangular buildings. In contrast, as a 
pure empirical kernel, KHotspot_vin was proposed based on a rough sta-
tistical regression of DRTs over natural surfaces (Cao et al., 2019a). It 
therefore becomes less capable for thermal directionality simulation 
over typical urban surfaces dominated by rectangular buildings. The 
RMSE differences between models with different base shape kernels are 
generally less than those with different hotspot kernels (except for the 
VUS model). This indicates that, in terms of the performance of kernel- 
driven models, the influence of the base shape kernel is less than that of 
the hotspot kernel. For example, the RMSEs of the RTH (by combining 
KHotspot_rou and KBaseShape_thin) and RTK (by combining KHotspot_rou and 
KBaseShape_thick) models are both 0.50 K, while the RMSE of the VTH 
model (by combining KHotspot_vin and KBaseShape_thin) is 0.57 K. The higher 
dependence of model performance on the hotspot rather than the base 
shape kernel during daytime is reasonable because daytime UTRD is 
primarily determined by the differences in component temperatures 
caused by the sunlit and shaded conditions of urban surfaces under 
strong solar radiation. 

We now further analyze the comparison of model performance under 
scenarios with different building heights and observation seasons. 

Building height directly affects the relative proportions of both 
horizontal and vertical surface components, which in turn affect the 
UTRD (Krayenhoff and Voogt, 2016; Hu and Wendel, 2019). For 
example, the difference between the maximum thermal anisotropy in-
tensities (i.e., the difference in the maximum minus minimum DRTs) of 
USM04 and USM06 at the same observation time (i.e., 11:00 local time 
in summer) can be up to 2.0 K (6.0 K vs. 4.0 K). The evaluations in terms 
of building height illustrate that the model fitting error generally in-
creases with building height (Fig. 5), mostly due to the more significant 
sunlit-shaded conditions with a greater building height. In spite of the 
large influence of building height on model performance, the results 
show that this would rarely affect the relative performance ranking of 
these models. 

Observational season largely determines the level of solar radiation 
and therefore affects the UTRD regime (Lagouarde et al., 2010). For 
example, the maximum difference in DRTs of USM01 at 13:00 local time 

Fig. 2. RMSEs of the 11 parametric kernel-driven models under Scheme #1. 
The top and bottom whiskers indicate the highest and lowest value within 
mean ± 1.5 times standard deviation (SD), respectively; the top and bottom of a 
box are the 25th and 75th percentile of the RMSEs, respectively; and the middle 
line and point within a box denote the median and mean RMSE, respectively. 
The black horizontal dashed line corresponds to the lowest mean RMSE. Note 
that the RMSEs are averaged based on all nine USMs at six typical times. 

Fig. 3. Polar diagrams of the MAEs of the single-kernel models. The concentric circles correspond to the off-nadir viewing zenith angles (φv, 0–360◦) whereas the 
radial lines indicate the viewing azimuth angles (θv, 0–60◦). 
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in winter (13.3 K) can be twice that in summer (6.3 K). To assess the 
influence of observation season on the model performances, we 
compared the simulation errors of models in both summer and winter 
(Fig. 6). The results show that observation season generally exerts a 
smaller impact on model performance when compared with building 
height (Fig. 6). For the same model, the fitting RMSE in summer is only 
slightly larger than that in winter (with ΔRMSE of 0.03–0.06 K on 
average), whereas ΔRMSE between the high- and low-rise buildings can 
reach 0.33–0.49 K (Figs. 5 and 6). Nevertheless, observation season 
would not substantially affect the relative ranking of model perfor-
mance, which is similar to that for building height. 

In addition to building height and observation season, additional 
assessments of street orientations and city latitude also confirm that 
urban surface morphology and solar radiation affect the fitting error of 
the models but they rarely affect the performance ranking (detailed 
assessments are given in Appendix C). 

4.1.2. Comparison based on observation angle and observation time 
The overall assessments in Section 4.1.1 are unable to provide a 

detailed view of the performance differences amongst the models. We 
now further examine the fitting errors at each observation time (Table 2) 
and the accuracy of the simulated DTRs depending on the observation 
angle. The assessments based on the analysis of 594 DRT polar diagrams 
under 54 scenarios (see Section 3.3) indicate that the performance dif-
ferences between the models can largely be explained by their ability to 
simulate DRTs and, in particular, their ability to describe hotspots. We 
take the UTRD simulation of USM01 at 13:00 as an example to examine 
the ability of the 11 parametric models to simulate hotspots (Figs. 7 and 
8). 

For the single-kernel models, the results show that the VIN model is 

superior to the other two single-kernel models (i.e., the ROU and RL 
models) in winter (Table 2). In summer, the VIN model remains superior 
to the ROU and RL models at 11:00 and 15:00, but it becomes less 
competent than the other two at 13:00 (Fig. 7 and Table 2). The 
complexity of model performance comparison in summer may be related 
to their associated capabilities in simulating hotspot location for 
different observation times (different SZAs). When the SZA is relatively 
higher (e.g., SZA > 30◦; in winter or at 11:00 and 15:00 in summer), all 
three models describe the hotspot locations more accurately. In contrast, 
when the SZA is small (e.g., SZA < 30◦ at 13:00 in summer), the hotspot 
location simulated by the VIN model is less accurate than those obtained 
by the RL and ROU models (Fig. 7). The differences in model design 
likely contribute to this contrast in model performance in different 
seasons and observation times (i.e., different SZAs). Unlike the ROU 
(KHotspot_rou) and RL models that fully consider the sensor-surface-sun 
geometry (including the zenith angles of the sun and sensor as well as 
the angular distance and the relative azimuthal angle between the sun 
and sensor) and set the hotspot location strictly based on the sun posi-
tion during UTRD simulation, the VIN model (KHotspot_vin) disregards the 
angular distance between the sun and sensor (i.e., the parameter ‘D' in 
Eq. (6) for the ROU model and Eq. (8) for the RL model) (Liu et al., 2018; 
Cao et al., 2019a). The disregard of the angular distance between the sun 
and sensor for the VIN model can lead to an inaccurate simulation of 
hotspot location, especially when the SZA is small. 

For the dual-kernel models, the performance differences between the 
models with the hotspot kernel KHotspot_rou and those with KHotspot_vin are 
more significant in summer than in winter. In summer, the models with 
KHotspot_rou (the RTH, RTK, and RVI models) depict more accurately both 
the hotspots and DRTs than those with KHotspot_vin (Table 3 and Fig. 7). 
The differences in the DRT distributions simulated by these different 

Fig. 4. Polar diagrams of the MAEs of the dual-kernel models.  
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models may be the result of the synergy of different combinations of 
hotspot and base shape kernels, rather than relying on only one of them 
(Peng et al., 2011). In winter, by comparison, each model describes the 
hotspot and DRT with comparable accuracy (Fig. 8). The comparable 
performances amongst models with KHotspot_rou and KHotspot_vin in winter 
is probably due to the relatively monotonous UTRD regime with a large 
SZA for this season (Fig. 8a). 

4.2. Comparison based on satellite data 

Reprocessed MODIS DRTs were used to evaluate model perfor-
mances (Scheme #2). Figs. 9 and 10 show that the performances of the 
11 parametric models under different scenarios over Chicago and New 
York City. The RMSEs of the parametric models based on MODIS DRTs 
are generally greater than those based on forward-modelling DRTs, and 

Fig. 5. Boxplots of the RMSEs. Same as Fig. 2, but for four types of USMs: (a) high-rise, (b) mid-rise, (c) low-rise, and (d) hybrid-rise, respectively.  

Fig. 6. Boxplots of the RMSEs. Same as Fig. 2, but for (a) summer and (b) winter, respectively.  

L. Jiang et al.                                                                                                                                                                                                                                    



Remote Sensing of Environment 263 (2021) 112562

10

accordingly the performance differences amongst models are relatively 
smaller, although the results based on MODIS LSTs remain mostly 
consistent with those with the simulation dataset. This may be due to the 
following characteristics of the MODIS LST dataset: (1) the retrieval 
error of the MODIS LSTs, especially over complex urban areas (1.0 K or 
higher) (Li et al., 2013), can contribute to the decreased model perfor-
mance. (2) The MODIS LSTs are not simultaneous observation from 
multiple angles but are values averaged at each observation angle 
throughout a 10-year period. (3) The model performances, if evaluated 
with the MODIS DRTs, can only be reflected along a single profile rather 
than within the entire upper hemisphere (refer to the profiles in Fig. A2 
given in Appendix A). 

The results in Fig. 9 further show that the model accuracies decrease 
with a higher urban fraction. This is probably because the UTRD in-
tensity for surfaces with a smaller urban fraction is usually less than that 

Table 2 
RMSEs (K) of the 11 parametric kernel-driven models at different observation 
times.  

Model name Summer Winter 

11:00 13:00 15:00 11:00 13:00 15:00 

ROU 0.77 0.51 0.70 1.12 1.04 1.16 
VIN 0.44 0.59 0.66 0.99 0.92 1.14 
RL 0.76 0.50 0.75 1.09 1.01 1.19 
RTH 0.34 0.36 0.42 0.53 0.54 0.82 
VTH 0.37 0.38 0.65 0.56 0.67 0.79 
RTK 0.36 0.36 0.44 0.51 0.52 0.82 
VTK 0.42 0.59 0.65 0.53 0.62 0.80 
RVI 0.34 0.36 0.43 0.51 0.53 0.79 
VVI 0.58 0.45 0.50 0.61 0.62 0.82 
RUS 0.37 0.38 0.64 0.63 0.74 0.80 
VUS 0.37 0.38 0.64 0.63 0.74 0.80  

Fig. 7. Polar-DRTs for USM01 simulated by the CoMSTIR (a) and 11 parametric models at 13:00 in summer (from (b) to (l)). The concentric circles correspond to the 
sun/sensor off-nadir zenith angles (θv/θs, 0–60◦) whereas the radial lines indicate the sun/sensor azimuth angles (φv/φs, 0–360◦). ‘þ’ and ‘S' indicate the hotspot and 
sun positions, respectively. 
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with a larger urban fraction, at least for the Chicago and New York cases 
(Hu et al., 2016a). For this dataset, we find no significant relationship 
between simulation accuracy and observation time. The model accu-
racies are very slightly higher at 11:00 than at 13:00 (Figs. 9 and 10), 
likely because the UTRD intensity at 13:00 is also relatively greater than 
that of 11:00 (Hu et al., 2016a). Nevertheless, the ranking of model 
performance remains mostly unchanged with different urban fractions 
and observation times. As indicated previously, the overall performance 
of the dual-kernel models is, by and large, better than that of the single- 
kernel models – the difference in RMSE between these two types of 
models is 0.16 K. However, some of the single-kernel models are more 
capable than some dual-kernel models; for example, the ROU model (a 
single-kernel model; RMSE = 0.82 K) is even slightly better than the 
dual-kernel VTK model (a dual-kernel model; RMSE = 1.04 K). 

For the single-kernel models, the overall performance ranking is as 
follows: ROU model (RMSE = 0.82 K) = RL model (RMSE = 0.82 K) >

Fig. 8. Polar-DRTs for USM01 simulated by the CoMSTIR (a) and 11 parametric models at 13:00 in winter (from (b) to (l)).  

Table 3 
DHSs (×10− 2) of the 11 parametric models at different observation times in 
summer.  

Model name 11:00 13:00 15:00 Average 

ROU 52.91 20.61 16.68 30.07 
VIN 19.65 50.48 4.96 25.03 
RL 52.89 16.25 21.33 30.16 
RTH 20.36 13.65 9.76 14.59 
VTH 22.48 22.51 4.57 16.52 
RTK 22.84 12.30 4.07 13.07 
VTK 21.00 51.75 4.96 25.90 
RVI 16.66 12.67 4.24 11.19 
VVI 22.38 13.71 4.76 13.62 
RUS 34.73 11.85 6.99 17.86 
VUS 16.26 31.29 4.46 17.33 

Note that the DHSs in winter are not listed because their values are very small: i. 
e., the simulated hotspots are sufficiently accurate during winter when the SZA is 
large (i.e., the hotspots are all concentrated at ~60◦ of VZA, see Fig. 8a). 
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VIN model (RMSE = 1.35 K). It is interesting that, contrary to the overall 
assessments with forward-modelling hemispherical DRTs (see Section 
4.1.1), the ROU and RL models perform significantly better than the VIN 
model when evaluated with MODIS DRTs (Figs. 9 and 10). One possible 
explanation may lie in the sun-surface-sensor (i.e., MODIS) geometry, 
for which the SZAs of the daytime MODIS overpasses (i.e., around 11:00 
and 13:00) are mostly lower than 30◦ over these two cities (Hu et al., 
2016a). In comparison, it has been shown that the VIN model is better 
than the other two single-kernel models when the SZA is large (see 
Section 4.1.2). For the dual-kernel models, the results again illustrate 
that the average RMSE of the models with KHotspot_rou is smaller than 
those with KHotspot_vin by 0.1 K, but the model performance ranking 
amongst the dual-kernel models varies slightly under different scenarios 
(Figs. 9 and 10). For example, the RVI (RMSE = 0.64 K) and VVI (RMSE 
= 0.63 K) models perform better than the other dual-kernel models at 
11:00 in Chicago (Fig. 9a), while the VTH (RMSE = 0.81 K) and RUS 
(RMSE = 0.82 K) models perform better at 13:00 in Chicago (Fig. 9b). 
The VTK model performs worse than the other dual-kernel models in 
almost all cases (Figs. 9 and 10). By excluding the VTK model, the dual- 
kernel models with KHotspot_rou (the RTH, RTK, RVI, and RUS models) 
and those with KHotspot_vin (the VTH, VVI, and VUS models) have similar 
performance, with mean RMSEs of 0.78 and 0.83 K, respectively. 

Amongst them, the overall performances of the RVI, VVI and RUS 
models are slightly better (the RMSEs are both 0.77 K). 

We however should note that the model performance comparison 
with the 10-year averaged MODIS multi-angle LST dataset is still very 
preliminary because this dataset possesses uncertainties. More in-depth 
investigations based on better satellite multi-angle DRTs are therefore 
necessary for achieving a finer comparison between these parametric 
models. 

4.3. Sensitivity analysis of model comparison with limited DRTs 

In contrast to the model comparisons with hemispherical DRTs 
(Scheme #1), this section assesses the stability and sensitivity of the 
parametric models with limited DRTs used as model inputs (Scheme 
#3). The error increments of models between Schemes #1 and #3 can 
reflect their stability (Table 4). The results show that the single-kernel 
VIN and ROU models are generally more stable than the dual-kernel 
models when only limited DRTs are available. The RMSE increments 
of the VIN and ROU models (i.e., 0.20 and 0.28 K, respectively) are 
considerably smaller than those of the dual-kernel models (the lowest 
RMSE increment for the dual-kernel models is 0.53 K, obtained by the 
RTH model). 

Fig. 9. RMSEs of the 11 kernel-driven models with daytime MODIS DRTs for Chicago and New York City. The grey shading encloses the three single-kernel models. 
The colored solid lines (left-y-axis) represent the RMSEs grouped into nine urban fraction intervals. The histograms (right-y-axis) indicate the mean RMSEs averaged 
from the nine urban fraction intervals. The black horizontal dashed line corresponds to the lowest mean RMSE amongst the eleven models. 
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For the three single-kernel models, the VIN model is the most stable, 

followed by the ROU model, while the RL model is the most sensitive to 
the number of DRTs, with an RMSE increment of 1.0 K between Schemes 
#1 and #3. For the eight dual-kernel models, those with the hotspot 
kernel KHotspot_rou (the RTH, RTK, RVI, and RUS models) show better 
stability than those with the hotspot kernel KHotspot_vin (the VTH, VTK, 
VVI, and VUS models). Amongst the four dual-kernel models with 
KHotspot_vin, the stabilities of the RTH, RTK, and RVI models are very 
similar, with RMSE increments of 0.53, 0.56, and 0.56 K, respectively. 
Considering both model accuracy and stability (Table 4), the VIN model 
is recommended for UTRD simulation when the available DRTs are very 
limited and relatively uniformly distributed within the upper hemi-
sphere, followed by the dual-kernel models with KHotspot_rou (e.g., the 
RTH, RTK, and RVI models). 

Fig. 10. MODIS multi-angle DRTs as well as the associated simulations by the 11 kernel-driven models at 11:00 (Terra-day) and 13:00 (Aqua-day) for Chicago and 
New York City. Here only the pixels with the urban fraction of 70% ~ 80% are demonstrated. The negative and positive VZAs represent the viewing azimuth angles 
that are larger (negative) and smaller (positive) than 180◦. The solid straight and dashed lines represent the VZA being equal to 0◦ (i.e., nadir) and corresponding sun 
positions, respectively. (a), (d), (g), and (j) are the simulations by the single-kernel models; (b), (e), (h), and (k) are the simulations by the dual-kernel models with 
KHotspot_rou; and (c), (f), (i), and (l) are the simulations by the dual-kernel models with KHotspot_vin. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 

Table 4 
RMSEs (K) of the 11 parametric models under Schemes #1 and #3.  

Model 
type 

Model 
name 

Scheme #3 
(K) 

Scheme #1 
(K) 

Scheme #3 - Scheme 
#1 (K) 

Single- 
kernel 

ROU 1.16 0.88 0.28 
VIN 0.99 0.79 0.20 
RL 1.89 0.89 1.00 

Dual- 
kernel 

RTH 1.03 0.50 0.53 
VTH 1.22 0.57 0.65 
RTK 1.06 0.50 0.56 
VTK 1.33 0.60 0.73 
RVI 1.05 0.49 0.56 
VVI 1.16 0.57 0.59 
RUS 1.20 0.60 0.60 
VUS 1.18 0.59 0.59  
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4.4. Discussion 

4.4.1. Comparison with several multi-kernel models 
The performances of several multi-kernel models were also 

compared and evaluated under Scheme #1, benchmarked by the RVI 
model (dual-kernel), which has the best overall performance amongst 
the aforementioned 11 single- and dual-kernel models. These multi- 
kernel models include four or more parameters: the hotspot-modified 
RVI model (five parameters, termed the RVIc model), the Kernel- 
Hotspot model (four parameters, termed the KRL model), and the 
GUTA-sparse model (four parameters). Detailed descriptions of three 
models are given in Appendix B. Note that the GUTA-osg model was not 

included because it requires urban morphology information as inputs, 
which is difficult to obtain at coarse resolutions. 

In general, the multi-kernel models perform better than the associ-
ated single- and dual-kernel models under some specific scenarios, but 
the performance improvement is relatively small (refer to Table 5 and 
Fig. 11). For different urban surface types, the mean RMSE with stan-
dard deviation (SD) of the dual-kernel RVI model is 0.49 ± 0.21 K; and 
those of the RVIc, KRL, and GUTA-sparse models are 0.48 ± 0.20, 0.61 
± 0.26, and 0.49 ± 0.21 K, respectively (Table 5). Specifically, the RVIc 
model performs slightly better than the other three multi-kernel models 
because its hotspot-modified kernel simulates the hotspot more accu-
rately. The KRL model derived from the combination of the RL and VVI 
models has the lowest accuracy, although its performance is signifi-
cantly improved compared with the original RL model (the RMSE 
decreased from 0.89 K for the RL model to 0.61 K for the KRL model). 
The GUTA-sparse model was designed for sparse urban surfaces and 
consequently it performs well over sparse urban surfaces (e.g., USM05, 
USM06, USM08, and USM09) but slightly worse over the other urban 
surfaces with a high building density. For example, the hotspot simu-
lated by the GUTA-sparse model is relatively less accurate over USM01 
(a neighborhood with densely-distributed buildings) for the summer 
case (Fig. 11). 

4.4.2. Limitations and prospects 
We have summarized the available parametric models and kernels 

for UTRD simulation and have then comprehensively compared the 
performances of three single- and eight dual-kernel models and dis-
cussed those of three multi-kernel models. We have also provided rec-
ommendations for choosing appropriate models under different 
scenarios. Arguably, the accuracy of the forward-modelling component 

Table 5 
RMSEs (K) of four kernel-driven models (i.e., the RVI, RVIc, KRL, GUTA-sparse 
models).  

Urban surface 
model 

RVI (K) RVIc (K) KRL (K) GUTA-sparse 
(K) 

USM01 0.84 0.81 0.90 0.85 
USM02 0.68 0.67 1.02 0.68 
USM03 0.64 0.62 0.69 0.63 
USM04 0.57 0.56 0.63 0.58 
USM05 0.46 0.45 0.52 0.45 
USM06 0.41 0.40 0.53 0.39 
USM07 0.41 0.40 0.66 0.43 
USM08 0.34 0.33 0.45 0.33 
USM09 0.09 0.09 0.11 0.09 
Mean ± SD 0.49 ±

0.21 
0.48 ±
0.20 

0.61 ±
0.25 

0.49 ± 0.21  

Fig. 11. Polar DRTs simulated by the RVI, RVIc, KRL, and GUTA-sparse models over USM01 at 13:00 during summer and winter. The original polar DRTs (simulated 
by the CoMSTIR) for validation are provided in Figs. 7 and 8. 
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temperatures simulated by Envi-met (with the MAE of ~1.0–2.0 K) and 
accordingly the forward-modelling DRTs simulated by CoMSTIR (with 
the RMSE of ~1.0 K) is probably inadequate for differentiating the 
performances amongst the parametric models. Nevertheless, here we are 
not focused on the absolute accuracy of the forward-modelling DRTs but 
more on the inversion abilities of parametric models in approximating 
the complex forward 3D mechanistic models. In addition, we have 
identified the following aspects that require further consideration: 

First, the construction of a large database of all-angle DRTs for a 
great variety of urban surface types and environmental conditions 
(including illumination and climatic conditions). Both forward- 
modelling and satellite datasets (MODIS LSTs) have been used for 
assessment of model performances in this study. Though various urban 
surface types and environmental conditions were considered for the 
forward-modelling datasets (designed based on different local climate 
zones, see Fig. A1), as well as for the MODIS LST dataset (data of two 
megacities with different fractions of impervious surfaces were incor-
porated, see Fig. 9), these two types of datasets may have several 
shortcomings. The forward-modelling dataset is still based on concep-
tual rather than real urban surfaces (Jiang et al., 2018). Differences 
between the conceptual and real urban surface types do exist and there 
are additional urban surface types that are not considered. The MODIS 
LST dataset does not comprise the original instantaneous observations 
but rather reprocessed ones averaged over a long period; in addition, its 
spatial resolution is relatively low (Hu et al., 2016a). Airborne mea-
surements can be used to obtain DRTs from real urban surfaces at fine 
resolutions, but it is very costly to obtain adequate amounts of such data 
for different urban surface types from different cities and under arbitrary 
environmental conditions. In recent years there has been the rapid 
development of unmanned aerial vehicle (UAV) technology, and UAV 
thermal observations can obtain quasi-real-time DRTs at very high 
spatial resolution. UAV technology can complement forward-modelling 
and satellite and airborne DRTs (Feng et al., 2020), allowing for the 
establishment of a large DRT database over sufficiently diverse 
conditions. 

Second, the design of parametric kernel-driven models that better 
suit UTRD simulation. The models or kernels compared in this study 
were mostly designed originally for vegetation surfaces, without strictly 
considering urban morphology. In other words, the newly-derived 
parametric models based on the kernel combination strategy are pri-
marily statistical (or empirical) rather than grounded strictly in urban 
morphology. Although this empirical kernel combination is well 
accepted for kernel-driven modelling (Wanner et al., 1995), it is still 
necessary to design kernel-driven models that are formulated specif-
ically for urban surfaces. We suggest the following strategies. The first 
strategy lies in the incorporation of the urban thermal inertia effect, 
which is mostly caused by the heat capacity differences amongst urban 
elements and which scales with impervious surface fraction, building 
structure, and building material. For surfaces where there are more el-
ements with higher heat capacity, there is likely to be more lag and 
correspondingly a larger azimuthal gap between the sun and hotspot 
(Lagouarde et al., 2010; Liu et al., 2019). Parametric models that 
consider this azimuthal gap can be designed to improve model perfor-
mance. The other strategy is to consider urban structure parameters (e. 
g., the sky view factor) that affect the illumination conditions of urban 
surface components and consequently the component temperatures. 
Great progress has been made recently in the parametric modelling of 
UTRD for urban surfaces. By considering urban morphology, the GUTA 
series models are able to simulate hotspot shapes distinctively occurring 
over urban areas, e.g., for either sparsely (i.e., the GUTA-sparse model) 
or densely (i.e., the GUTA-osg and GUTA-dense models) distributed 
buildings (Wang et al., 2018a, 2018b; Wang and Chen, 2019). 

Specifically, a priori knowledge of building morphology information is 
required for the GUTA-osg and GUTA-dense models, while such infor-
mation is unnecessary for the linear GUTA-sparse model. We believe 
that the GUTA series models are anticipated to be better options in the 
near future when increasingly more urban morphology information 
becomes available. We suggest that much more effort is needed to 
develop models or kernels suitable for a greater variety of urban surface 
types and solar illumination conditions. 

Third, the UTRD can be greatly impacted by canopy morphology and 
vegetation abundance (Dyce and Voogt, 2018). The variations of 
morphological and thermal properties within a heterogeneous urban 
landscape can influence the UTRD – the UTRD intensity over urban 
surfaces with vegetation can be either increased or decreased, depend-
ing on the vegetation abundance as well as the vegetation and building 
morphology (Dyce and Voogt, 2018). The USMs used in this study have 
considered the importance of the vegetation cover – four amongst the 
nine USMs have incorporated vegetation. Nevertheless, the realistic 
representation of vegetation remains inadequate in current USMs. The 
spatial pattern of vegetation and buildings is also relatively simple, e.g., 
surfaces with vegetation fraction higher than that of building were not 
considered. In other words, these USMs were still dominated by build-
ings, based on which models have been compared. For the scenarios 
where vegetation dominates, the model performances are anticipated to 
be slightly different; and for these urban surfaces, the optimal para-
metric models may be close to those that were entirely based on pure 
vegetation (i.e., without impervious surface) (Liu et al., 2018; Cao et al., 
2019a, 2019b, 2021). To this end, we provide the following suggestions 
for model selection: Results of the current study are recommended when 
the urban landscape is dominated by impervious surfaces such as 
buildings; results from Cao et al. (2019a, 2019b, 2021) are recom-
mended when the urban landscape is dominated by vegetation; for 
urban landscape with approximately equal fractions between imper-
vious surface and vegetation, practitioners should be more careful and 
should refer to both types of studies. 

5. Conclusions 

Parametric kernel-driven models used for UTRD simulation are 
crucial for the angular normalization of remotely-sensed LSTs obtained 
at slant angles. However, it remains largely unknown which of the 
parametric kernel-driven models has the best performance for simu-
lating UTRD under various types of urban surface. It is also unclear 
whether models with even better performance can be developed by 
combining the available hotspot and base shape kernels. Based on both 
forward-modelling and satellite datasets, we have summarized and then 
compared 14 usable parametric models (including 3 single-kernel, 8 
dual-kernel, and 3 multi-kernel models) over a large variety of urban 
surfaces and solar radiation conditions. 

Our major findings are as follows: (1) The dual-kernel models that 
combine one hotspot kernel and one base shape kernel perform better 
than the single-kernel models with only a hotspot kernel. The mean 
RMSE of the dual-kernel models is 0.30 K lower than that of the single- 
kernel models. (2) For the three single-kernel models, the overall per-
formance of the VIN model is superior to that of the ROU and RL models. 
However, the hotspot simulated by the VIN model is less accurate than 
the other two models, especially when the SZA is small (SZA ≤ 30◦). For 
this reason, the VIN model becomes less competent than the ROU and RL 
models with the MODIS dataset as model inputs, mainly because the SZA 
is often small for daytime MODIS overpasses (i.e., close to solar noon). 
(3) For the eight dual-kernel models, those with KHotspot_rou as the hot-
spot kernel are mostly more capable than those with KHotspot_vin, prob-
ably because the hotspot kernel KHotspot_rou are parametrized based on 
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rectangular objects that are more comparable to urban buildings while 
KHotspot_vin is less capable for the simulation of hotspot location. Amongst 
the three dual-kernel models with KHotspot_rou (i.e., the RVI, RTH, and 
RTK models), the RVI model has the best performance (the RMSE is 
~0.49 and ~0.77 K based on forward-modelling and satellite data, 
respectively), although the differences between these three models are 
small. (4) The multi-kernel models have higher accuracies compared 
with the dual-kernel models, but their performance improvements are 
relatively limited. 

Based on these findings, if the available DRTs are very limited (e.g., 
three to five observed DRTs), we recommend the use of the single-kernel 
models: the VIN model is preferred when the SZA is larger than 30◦, 
otherwise the ROU model is recommended. When there are adequate 
DRTs, we recommend practitioners use the dual-kernel models, and the 
RVI model is generally the optimal option. Our findings are potentially 
helpful for the angular normalization of satellite-derived urban LST 
products, as well as for the remote estimation of complete urban LSTs. 

Overall, they contribute significantly to the enhancement of thermal 
remote sensing of urban climates and environment. 
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Appendix A. Urban surface models and distribution of viewing angles of the used MODIS data

Fig. A1. Nine USMs with different the sky view factors (SVFs) and aspect ratios (H/W, where H and W are the wall height and street width, respectively), adapted 
from Jiang et al. (2018).  
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Fig. A2. Polar diagram of the distribution of the viewing angles of MODIS in Chicago during daytime, adapted from Hu et al. (2016a). The concentric circles (0–65◦) 
and radial lines (0–360◦) of the polar diagram represent the sensor/sun zenith and azimuth angles, respectively. 

Appendix B. Formulae of several multi-kernel models 

This appendix presents the formulae for several parametric models mentioned in Section 4.4.1, which can be used for UTRD simulation. They 
include the hotspot-modified RVI model (termed the RVIc model), the Kernel-Hotspot model (termed the KRL model), and the GUTA-sparse model. 

Chen and Cihlar (1997) proposed a modification function (Fm) to improve the performance of kernel-driven BRDF models by improving hotspot 
simulation. The function Fm is also applicable to modifying the hotspot description in UTRD simulation. The hotspot sharpening function Fm was 
therefore incorporated into the RVI model, which has the overall best performance amongst 11 parametric models (see Section 4), resulting in a new 
hotspot-modified RVI model (termed the RVIc model). The RVIc model can be written as follows: 
⎧
⎨

⎩

T(θs, θv,φ) =
(
fiso + fHotspot⋅KHotspot rou + fBaseShape⋅KBaseShape vin

)
⋅Fm

Fm = 1 + C1e− C2
ξ
π

(B1)  

where Fm is the hotspot sharpening function, with the detailed formula given in Chen and Cihlar (1997); C1 and C2 are two coefficients; and ξ is the 
phase angle related to the sun-surface-sensor position. 

The Kernel-Hotspot model (termed the KRL model) integrates the Vinnikov and RL models and is more capable of simulating the shadowing effect 
during the day and the base shape kernel anisotropy at night (Ermida et al., 2018b). The validity of the KRL model has been tested over vegetation 
surfaces (Ermida et al., 2018b). This study further tested the performance of the KRL model for UTRD simulation. To facilitate model comparison, we 
converted the formula of the original KRL model according to the general expression Eq. (8). Specifically, (1) the ‘T0’ on the left side of the equation 
was moved to the right side as fiso; (2) the coefficient of hotspot kernel ‘B⋅Rad*TOA’ was integrated into a single coefficient fHotspot. From the modelling 
perspective, the KRL model is exactly equivalent before and after the conversion. The converted KRL model can be expressed as follows: 

T(θs, θv,φ) = fiso + fHotspot⋅sin(2θs)⋅KHotspot rl + fBaseShape⋅KBaseShape vin (B2)  

where sin(2θs)⋅KHotspot_rl is the hotspot kernel, and D is the angular distance between the sun and sensor (refer to Eq. (2)). 
The GUTA-sparse model was designed for UTRD simulation over a sparse urban canopy without mutual shadowing (Wang et al., 2018b). It can be 

expressed by the following formula: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T(θs, θv,φ) = fiso + fbgdKbgd(θs, θv,φ) + foriKori(θs, θv,φ) + fshwKshw(θs, θv,φ)

Kbgd(θs, θv,φ) =
2
πtanθv

Kori(θs, θv,φ) =
1

2π ((π − φ)cosφ + sinφ )tanθv

Kshw(θs, θv,φ) =
1
πtanθs

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
tan2θs + tan2θv − 2tanθstanθvcosφ

√

tanθs + tanθv
− 1

)

(cosφ + 1)

(B3) 
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where fiso, fbgd, fori, and fshw are the coefficients; and Kbgd, Kori, and Kshw are three kernels weighting the contributions from the surface background, 
orientation effect, and shadow, respectively. 

Appendix C. Analysis of the impacts of scenarios with different street orientations and city latitudes on model performances 

The performances of the 11 parametric models for the six USMs with different street orientations (see Section 2.1) are listed in Table C1. The 
accuracy for USM02-0◦ is slightly lower than those USMs with a rotation angle (with ΔRMSE of 0.03–0.13 K on average). Specially, when the rotation 
angle is less than 45◦, the RMSE remains mostly unchanged; when the rotation angle exceeds 45◦, the RMSE can be decreased by about 0.1 K. The 
slight increase of the model accuracy when the rotation angle is >45◦ may be related to the smaller UTRD intensity under this scenario, which results 
from the significantly reduced fractions of shadow components for USMs with building lengths greater than widths (e.g., USM02). However, the 
relative performance ranks amongst models remains relatively highly consistent amongst these scenarios (Table C1).  

Table C1 
RMSEs (K) of the 11 parametric kernel-driven models for USM02 with different street orientations.  

Model name 0◦ 15◦ 30◦ 45◦ 60◦ 75◦

ROU 1.21 1.24 1.23 1.11 1.17 1.12 
VIN 1.08 1.01 1.04 0.90 0.90 0.91 
RL 1.21 1.24 1.21 1.09 1.17 1.14 
RTH 0.69 0.66 0.66 0.59 0.60 0.59 
VTH 0.78 0.72 0.72 0.63 0.65 0.64 
RTK 0.69 0.66 0.66 0.58 0.60 0.59 
VTK 0.82 0.75 0.78 0.68 0.67 0.67 
RVI 0.69 0.64 0.64 0.58 0.58 0.57 
VVI 0.78 0.71 0.71 0.62 0.65 0.63 
RUS 0.82 0.81 0.80 0.72 0.75 0.71 
VUS 0.80 0.73 0.74 0.64 0.67 0.65 
Mean 0.87 0.83 0.84 0.74 0.76 0.75  

The performances of the 11 parametric models for the five latitudes (including Nanjing) (see Section 2.1) for USM01 are listed in Table C2. For the 
same model, the difference in RMSE amongst cities with different latitudes ranges from 0.22 to 0.61 K, but this difference is less related to city latitude. 
As before, the relative performance ranking of the models remains relatively highly consistent for scenarios with different latitudes.  

Table C2 
RMSEs (K) of the 11 parametric kernel-driven models with different city latitudes: 45.93◦N (Harbin), 40.08◦N (Beijing), 31.56◦N (Nanjing), 26.08◦N (Fuzhou), and 
20◦N (Haikou).  

Model name 45.93◦N 40.08◦N 31.56◦N 26.08◦N 20◦N Mean ± SD 

ROU 1.39 1.52 1.34 1.41 1.07 1.35 ± 0.15 
VIN 1.36 1.33 1.19 1.26 1.08 1.24 ± 0.10 
RL 1.72 1.61 1.36 1.41 1.11 1.44 ± 0.21 
RTH 1.01 1.06 0.85 0.99 0.69 0.92 ± 0.13 
VTH 1.12 1.10 0.91 1.06 0.81 1.00 ± 0.12 
RTK 1.03 1.07 0.84 0.98 0.69 0.92 ± 0.14 
VTK 1.12 1.11 0.96 1.11 0.90 1.04 ± 0.09 
RVI 0.97 1.03 0.84 0.97 0.69 0.90 ± 0.12 
VVI 0.98 1.08 0.90 1.04 0.75 0.95 ± 0.12 
RUS 1.07 1.18 0.97 1.10 0.79 1.02 ± 0.13 
VUS 0.99 1.09 0.92 1.06 0.77 0.97 ± 0.11  
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