
ISPRS Journal of Photogrammetry and Remote Sensing 181 (2021) 67–83

Available online 16 September 2021
0924-2716/© 2021 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

Simultaneous investigation of surface and canopy urban heat islands over 
global cities 

Huilin Du a, Wenfeng Zhan a,b,*, Zihan Liu a, Jiufeng Li a, Long Li a, Jiameng Lai a, Shiqi Miao a, 
Fan Huang a, Chenguang Wang a, Chunli Wang a, Huyan Fu a, Lu Jiang a, Falu Hong a, Sida Jiang a 

a Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, 
Jiangsu 210023, China 
b Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China   

A R T I C L E  I N F O   

Keywords: 
Surface urban heat island 
Canopy urban heat island 
Thermal remote sensing 
Surface properties 
Population size 
Climatic controls 

A B S T R A C T   

Interpreting the similarities and dissimilarities in spatiotemporal variations and various controls between surface 
and canopy urban heat islands (UHIs) is critical for a better understanding of their vertical structure. Preceding 
comparisons of the surface UHI (SUHI) and canopy UHI (CUHI), however, remain mostly restricted either in a 
single city or over a few cities within limited background climates; therefore, the associated similarities and 
dissimilarities between the SUHI and CUHI under different climates, especially at a global scale, remain largely 
unknown. Based on both satellite and in situ data, we simultaneously investigated the spatiotemporal patterns of 
the SUHI intensity (SUHII) and CUHI intensity (SUHII) of 366 global cities within various background climates. 
We further investigated the different impacts of several controls (e.g., vegetation coverage, population size, 
precipitation) on SUHII and CUHII. Our results indicate the following: (1) For the selected 366 cities, the annual 
mean SUHII is higher than CUHII by 1.1 ± 1.9 ◦C (mean ± Std) during the day and 0.3 ± 1.5 ◦C (mean ± Std) at 
night. The SUHII and CUHII in the equatorial, warm temperate, and snow climates are generally consistent with 
the above characteristics (i.e., SUHII > CUHII), however, in arid regions SUHII is lower than CUHII by 0.8 ◦C 
during the day. (2) The annual mean day–night difference in SUHII is positive (i.e., 0.6 ± 1.8 ◦C (mean ± Std)), 
while the difference in CUHII becomes negative (i.e., − 0.2 ± 1.6 ◦C (mean ± Std)), indicating that urbanization 
increases the diurnal temperature range (DTR) based on land surface temperature, but it decreases the DTR based 
on surface air temperature. (3) Despite the high correlation between vegetation coverage and impervious surface 
percentage (ISP), their impacts on SUHII and CUHII were not consistent. The urban–rural difference in ISP exerts 
an insignificant impact on both SUHII and CUHII during the day and a greater impact on CUHII than on SUHII at 
night, whereas the urban–rural difference in vegetation coverage has a greater impact on SUHII than on CUHII 
during the day, while the opposite occurs at night. The impacts of population size on SUHII and CUHII are much 
greater during the night than on the day in which their impacts can be minimal. The relationship between annual 
mean precipitation and SUHII is positive during the day but negative at night, while for CUHII, their relationship 
is insignificantly negative both during the day and at night. These results can improve our understanding of the 
spatiotemporal patterns and controls of these two types of UHIs under various climates.   

1. Introduction 

In recent years, rapid urbanization has led to drastic changes in the 
urban environment (Wohlfahrt et al., 2019). One of the changes is the 
urban heat island (UHI) effect, a phenomenon with warmer tempera
tures in urban surfaces than in rural surroundings (Aida and Yaji, 1979; 
Jin, 2012; Oke, 1982). Understanding and monitoring UHIs have 
become a focus of urban climate research (Li et al., 2021; Oleson et al., 

2015; Paschalis et al., 2021; Stewart, 2019), mostly because of its serious 
negative impacts on the urban environment (Santamouris, 2020) and 
human health (Tan et al., 2010). Previous studies have investigated both 
the surface UHI (SUHI) and canopy UHI (CUHI) based on satellite- 
derived land surface temperature (Ts) and site-based air temperature 
(Ta), respectively. The physical representations of Ts and Ta are closely 
related, yet they also differ in many aspects (Good, 2016; Jin and 
Dickinson, 2010). Ts can be easily obtainable regularly and directly with 
satellite thermal sensors over a large scale (Huang and Wang, 2019; 
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Weng, 2009), but it can often be invalidated by cloud contamination 
(Sun et al., 2017) and is highly sensitive to surface properties (Li et al., 
2013). In comparison, Ta appears to be more homogeneous due to near- 
surface atmospheric turbulence and mixing (Good, 2016). Ta is often 
obtained by ground-based stations with a high observation frequency 
and accuracy, but is usually affected by the sparse and uneven distri
bution of stations (Sheng et al., 2017). A combination of Ts and Ta to 
investigate the SUHI and CUHI simultaneously provides more compre
hensive knowledge of the spatiotemporal characteristics of UHIs (Jin, 
2012; Li and Zha, 2019; Yang et al., 2020). 

The SUHI and CUHI have been examined simultaneously on local 
(Anniballe et al., 2014; Bonafoni et al., 2015; Chakraborty et al., 2017; 
Cui and De Foy, 2012; Ho et al., 2016; Hu et al., 2019; Huang et al., 
2020; Li et al., 2017; Schwarz et al., 2012; Sheng et al., 2017; Wang 
et al., 2020; Yang et al., 2020; Zhang et al., 2014a) or regional scales (Li 
and Zha, 2019; Sun et al., 2020; Venter et al., 2021; Zhang et al., 2014b). 
These studies have indicated that there are differences in the patterns of 
the diurnal and seasonal variations between the SUHI and CUHI, and the 
differences are not consistent among cities under different background 
climates. 

In terms of diurnal variations, the SUHI intensity (SUHII) is usually 
greater than the CUHI intensity (CUHII), and the difference between 
these two intensities is greater during the day than at night (Anniballe 
et al., 2014; Chakraborty et al., 2017; Sun et al., 2015; Venter et al., 
2021; Zhang et al., 2014b). For example, during the summer daytime, 
SUHII was stronger than CUHII by 9.4 ◦C in Milan (Anniballe et al., 
2014), and by approximately 2.0 ◦C for European 342 urban clusters 
(Venter et al., 2021), and the difference between SUHII and CUHII, in 
Beijing, is more than 2.0 ◦C during the day in all seasons, with a larger 
difference in summer than in winter (Sun et al., 2015). In contrast, the 
difference between SUHII and CUHII was generally smaller at night. At 
night, the SUHII only slightly surpasses CUHII (less than 2.0 ◦C) in Milan 
(Anniballe et al., 2014), Beijing (Sun et al., 2015), Leipzig (Schwarz 
et al., 2012) and European 342 urban clusters (Venter et al., 2021). 

In terms of seasonal variations, during the daytime, SUHII is rela
tively less affected by background climate than CUHII (Hu et al., 2019). 
Specifically, daytime SUHII is usually stronger in the summer (Li et al., 
2017; Sheng et al., 2017; Wang et al., 2017; Yang et al., 2020). For 
daytime CUHII, although Beijing and Changchun are both located in the 

temperate monsoon climate zone, the former has a stronger daytime 
CUHII in summer than in winter (Wang et al., 2017), while the latter 
exhibits the converse trend (Yang et al., 2020). The significant difference 
in seasonal variation of daytime CUHII is also manifested in Wuhan (Li 
et al., 2017) and Hangzhou (Sheng et al., 2017), both with a subtropical 
monsoon climate. At night, the seasonal variations of SUHII and CUHII 
both show significant differences depending on the background climate. 
For example, the nighttime SUHII reaches a maximum in summer in 
Birmingham, with a temperate maritime climate (Zhang et al., 2014a), 
while it becomes the strongest in winter in Beijing (Hu et al., 2019). The 
nighttime CUHII is greater in summer than in winter in Birmingham 
(Zhang et al., 2014a), but the opposite occurs in Hangzhou (Sheng et al., 
2017). 

Previous studies have also directly compared or indirectly indicated 
the discrepancies in various controls for these two types of UHIs 
(Anniballe et al., 2014; Chakraborty et al., 2020; Clinton and Gong, 
2013; Hu et al., 2019; Imhoff et al., 2010; Lai et al., 2021; Li et al., 2019; 
Li et al., 2020a; Manoli et al., 2019; Manoli et al., 2020a; Miles and Esau, 
2020; Oke, 1973; Paschalis et al., 2021; Peng et al., 2012; Sun et al., 
2015; Venter et al., 2021; Wang et al., 2017; Zhao et al., 2014). These 
controls can be divided into three main categories: surface properties (i. 
e., albedo, vegetation coverage, impervious surface percentage), overall 
urbanization metric (i.e., urban area, urban population, urban size), and 
climatic controls (i.e., air temperature, precipitation). 

The first is the investigation of surface properties on SUHI and/or 
CUHI (Anniballe et al., 2014; Li and Zha, 2019; Venter et al., 2021; 
Wang et al., 2017). Such studies have indicated that vegetation coverage 
has a greater influence on SUHII than CUHII at both day and night 
(Anniballe et al., 2014; Venter et al., 2021). The ISP exerts a larger 
impact on SUHII during the day but influences CUHII more at night 
(Venter et al., 2021; Wang et al., 2017). The urban–rural difference in 
albedo is positively correlated with SUHII during the day, but their 
correlation becomes the opposite at night (Li et al., 2020b; Peng et al., 
2012); while this surface parameter is negatively correlated with the 
daily mean CUHII (Li and Zha, 2019). Besides, this urban–rural albedo 
difference influences SUHII more than CUHII at both day and night 
(Venter et al., 2021). The second is the examination of the overall ur
banization metric on SUHI and CUHI. For example, previous studies 
have indicated that the logarithm of urban size (or urban population) 

Nomenclature 

Abbreviations and symbols 
CUCI canopy urban cool island 
CUHI canopy urban heat island 
CUHII CUHI intensity 
CUHIIday daytime CUHII 
CUHIIngt nighttime CUHII 
DTR diurnal temperature range 
ISA impervious surface area 
ISP impervious surface percentage 
PREP precipitation 
SUCI surface urban cool island 
SUHI surface urban heat island 
SUHII SUHI intensity 
SUHIIday daytime SUHII 
SUHIIngt nighttime SUHII 
SUHIIpixel SUHII based only on the land surface temperature of the 

pixels where the station pairs are located 
SUHIIpixel_day daytime SUHIIpixel 
SUHIIpixel_ngt nighttime SUHIIpixel 
UHI urban heat island 
UHII UHI intensity 

UHIIday daytime UHII 
UHIngt nighttime UHII 
ΔCUHII day–night difference of CUHII 
ΔDist% ratio of distance between the urban and rural stations to 

the urban center 
ΔDTR urbanization-induced variations in DTR 
ΔEVI urban–rural difference in vegetation coverage 
ΔISP urban–rural difference in impervious surface percentage 
ΔSUHII day–night difference of SUHII 
ΔWSA urban–rural difference in albedo 
log(P) logarithm of urban population 
Ta surface air temperature 
Tmax maximum Ta 
Tmin minimum Ta 
Ts land surface temperature 
δ standard deviation 
δh1 daytime time difference between Ts and Ta 
δh2 nighttime time difference between Ts and Ta 
δh3 time difference in daily maximum Ta between urban and 

rural areas 
δh4 time difference in daily minimum Ta between urban and 

rural areas  
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has a linearly positive relationship with both SUHII (Clinton and Gong, 
2013; Miles and Esau, 2020; Zhao et al., 2014) and CUHII (Oke, 1973). 
The last is the investigation of climatic controls on these two types of 
UHIs (He, 2018; Hu et al., 2019; Lai et al., 2021; Li et al., 2019; Li et al., 
2020a; Manoli et al., 2019; Peng et al., 2012; Wang et al., 2020; Zhao 
et al., 2014). These studies have revealed that the correlation between 
the annual mean precipitation (PREP) and SUHII is usually positive 
during the day but negative at night (Lai et al., 2021; Li et al., 2019; Li 
et al., 2020a; Peng et al., 2012; Zhao et al., 2014), whereas the annual 
mean PREP often poses a negative impact on the daily mean CUHII (Hu 
et al., 2019). 

Previous studies on the simultaneous investigation of SUHI and CUHI 
have been mostly limited in a single city or over a few cities. A few 
studies have examined these two types of UHIs concurrently over a large 
number of cities in United States (Zhang et al., 2014b) and in Europe 
(Venter et al., 2021), yet they have focused either on limited climates (e. 
g., warm temperate climate) or on specific time periods (e.g., heat wave 
period or summer and winter). Thus, despite great progress achieved by 
preceding studies, two issues remain to be addressed. First, the differ
ences in the spatiotemporal variations between SUHII and CUHII for 
cities within abundant types of climates remain largely not clear. Sec
ond, the different impacts from various controls on these two types of 
UHIs have not been clarified uniformly and consistently for cities in a 
great variety of background climates over a large scale. 

Facing these challenges, we investigated SUHII and CUHII across 366 
global cities by combining both satellite and in situ data. The main ob
jectives include: (1) investigating the spatiotemporal patterns of SUHII 
and CUHII for these 366 cities and (2) investigating the relationships 
between typical controls (i.e., surface properties, overall urbanization 
metric, climatic controls) and SUHII and CUHII. We believe that our 
research can assist an improved understanding of both surface and 
canopy UHIs. 

2. Study area and data 

2.1. Study area 

In this study, a total of 366 global cities with urban areas exceeding 
10 km2 were selected, mostly considering whether there are usable 
urban–rural station pairs of in situ Ta measurements within a city (Fig. 1) 
(more details on city selection are given in Section 3.1.2). The resulting 
366 cities are distributed in four climatic zones according to the 

Köppen–Geiger classification scheme (Kottek et al., 2006), including the 
equatorial (10 cities), arid (43 cities), warm temperate (203 cities), and 
snow zones (110 cities). These cities can also be divided into four groups 
depending on city size (OECD, 2021), including 234 small cities (with 
urban population < 0.2 million), 52 medium cities (0.2–0.5 million), 43 
large cities (0.5–1.5 million), and 37 mega cities (>1.5 million). Note 
that the mid-latitude and high-latitude cities in warm temperate and 
snow climates were incorporated here, partly because the UHI effect 
may provide benefits to these cities by producing additional heat that 
could be helpful for urban residents (Martilli et al., 2020a; Oke et al., 
2017; Sun and Augenbroe, 2014; Yang and Bou-Zeid, 2018), and partly 
because it has been very common to investigate the UHIs of these cities 
in previous studies that concentrating on a very large scale (Chakraborty 
and Lee, 2019; Clinton and Gong, 2013; Imhoff et al., 2010; Peng et al., 
2012; Varquez and Kanda, 2018). 

2.2. Data 

The data used in this stuy included meteorological measurements, 
MODIS images, reanalysis data and auxiliary data. The meteorological 
data were used primarily to calculate CUHII and for the associated 
sensitivity analysis. The MODIS data were applied mainly to calculate 
SUHII and investigate the impacts of the vegetation index and surface 
albedo on SUHII and CUHII. The reanalysis data were utilized to explore 
the impacts from climatic controls (i.e., air temperature, precipitation) 
on SUHII and CUHII, and the auxiliary data were employed primarily to 
determine the urban boundary and analyze the impacts of population 
and ISP on SUHII and CUHII. 

2.2.1. Meteorological data 
We employed Ta measurements in 2012 from two sources, i.e., the 

Breakpoint Adjusted Monthly Station dataset downloaded from Berkeley 
Earth (http://berkeleyearth.org/) and the China Meteorological Science 
Data Center (CMSDC, http://data.cma.cn/). This dataset provides a 
collection of adjusted and homogeneous monthly mean maximum and 
minimum Ta data collected over more than 20,000 ground-based sta
tions globally (Rohde et al., 2013). Considering that the station number 
within this dataset is relatively limited across China, we further incor
porated more monthly mean Ta data from the CMSDC, which consists of 
Ta data at over 2,400 stations. The Ta datasets from these two sources 
were used for the selection of urban–rural station pairs and the calcu
lation of CUHII (refer to Sections 3.1, 3.2). We further employed hourly 

Fig. 1. Distribution of the selected 366 cities worldwide.  
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Ta measurements densely distributed in three cities, including Beijing 
(316 sites), Shenyang (246 sites), and Guangzhou (339 sites), also ob
tained from the CMSDC. This hourly dataset was applied to test the 
impacts from the representativeness of the chosen urban–rural station 
pairs as well as from the data acquisition time differences between in situ 
Ta and satellite-derived Ts (refer to Section 5.2). 

2.2.2. MODIS data 
The daily Ts product (MYD11A1, with a spatial resolution of 1 km), 

16-day composite EVI product (MYD13A2, 1 km), 16-day composite 
albedo product (MCD43B3, 1 km), and yearly land cover type product 
(MCD12Q1, 0.5 km) in 2012 were employed in this study (Table 1). The 
Ts and land-cover type data were used for calculating SUHII. The 
retrieval errors of the Ts data are within ± 1.0 ◦C in most cases (Wan and 
Dozier, 1996). Here, we only employed the Ts data from Aqua/MODIS 
rather than from Terra/MODIS because the transit times of the former 
satellite (i.e., 13:30 and 01:30 local solar time) are relatively closer to 
the times of daily maximum and minimum Ta (Oke et al., 2017). A total 
of 17 land cover types defined by the International Geosphere-Biosphere 
Program classification scheme were used to eliminate the pixels labeled 
as water, snow and ice, and permanent wetlands (Lai et al., 2018). The 
EVI and white sky albedo (WSA) data were used to investigate the im
pacts of the urban–rural difference in vegetation abundance and surface 
albedo on SUHII and CUHII. 

2.2.3. Reanalysis data 
The reanalysis data in 2012 provided by the TerraClimate dataset 

(http://www.climatologylab.org/terraclimate.html), including the 
monthly maximum and minimum air temperature and precipitation, 
were employed to investigate the impacts from climatic controls on 
SUHII and CUHII. This is a dataset that includes most monthly climatic 
variables for global terrestrial surfaces with a spatial resolution of 2.5 
arc minutes (approximately 4 km), and its overall accuracy is generally 
higher than other similar coarse-resolution gridded datasets (Abatzo
glou et al., 2018). 

2.2.4. Auxiliary data 
The auxiliary data consist of urban boundary, elevation, impervious 

surface area, and population data (Table 1). Global urban boundary 
(GUB) data were derived from the global artificial impervious area 
(GAIA) product (Li et al., 2020c) and were used to determine urban 
areas. The digital elevation data obtained from GTOPO30 with a spatial 
resolution of 30 arc-seconds (approximately 900 m) were employed to 
eliminate pixels/stations with an elevation of ± 50 m from the median 
elevation of the urban pixels (Imhoff et al., 2010; Lai et al., 2018; Venter 
et al., 2021; Zhang et al., 2014b). Note that the median rather than the 
mean elevation was employed here to eliminate fragmentary urban 
pixels with extremely high or low elevations. The impervious surface 
area, with a spatial resolution of 30 m, was obtained from the global 
artificial impervious area (GAIA) product, which has a mean overall 
accuracy exceeding 90% (Gong et al., 2020). The GAIA product was used 

to identify appropriate urban–rural station pairs and analyze the impact 
from ISP on SUHII and CUHII. The population data were derived from 
GPWv411 with a spatial resolution of 30 arc seconds (Doxsey-Whitfield 
et al., 2015), and were employed to categorize cities according to city 
size as well as to investigate the impacts of population on SUHII and 
CUHII. The digital elevation and population data were resampled to 1 
km using the nearest neighbor method to match the spatial resolution of 
the Ts data (Clinton and Gong, 2013; Lai et al., 2018). 

3. Methods 

The differences between SUHII and CUHII in terms of spatiotemporal 
variations and various controls were investigated using the following 
three steps. (1) Delineation of urban and rural areas and the selection of 
appropriate urban–rural station pairs: The urban and rural areas were 
delineated based on urban boundaries, land use type, and DEM data 
(Section 3.1.1), and the appropriate urban–rural station pairs were 
identified by associating with the ISP information (Section 3.1.2). (2) 
Calculation and simultaneous investigation of SUHII and CUHII: The SUHII 
and CUHII of all cities were estimated (Section 3.2.1), and their differ
ences in temporal (seasonal and diurnal) and spatial (various climate 
zones) variations were analyzed (Section 3.2.2). (3) Investigation into 
controls of SUHII and CUHII: The impacts from surface properties, overall 
urbanization metric, and climatic controls on SUHII and CUHII were 
examined across various climates and seasons (Section 3.3). 

3.1. Definition of urban and rural areas and station pairs 

3.1.1. Determination of urban and rural areas 
In this study, the pixels within urban boundaries provided by the 

GUB data were flagged as urban areas, and the rural areas were defined 
as the ring areas between the buffer zones of 1.5 km and 10 km outside 
the urban edge. The pixels tagged as snow and ice, water bodies, and 
permanent wetlands were removed to avoid their impacts on the esti
mation of SUHII (Chakraborty et al., 2020; Chakraborty and Lee, 2019; 
Lai et al., 2018). In addition, pixels with elevations exceeding ± 50 m 
from the median elevation of urban pixels were also disregarded to 
eliminate the impact of altitude (Imhoff et al., 2010; Lai et al., 2018; 
Venter et al., 2021; Zhang et al., 2014b). 

3.1.2. Selection of urban–rural station pairs 
In previous studies, CUHII was typically estimated as the Ta differ

ence between a selected urban–rural station pair (Tam et al., 2015; 
Wang et al., 1990), and the station pairs are generally defined based on 
the ISP within a buffer zone around the station (Tysa et al., 2019; Wang 
et al., 2017). In this investigation, we similarly differentiated urban and 
rural stations by calculating the ISP of a 200-m buffer zone around the 
station to retrieve urban–rural station pairs, mainly considering that the 
footprint of a meteorological sensor is roughly 50 to 100 times its height 
(Oke, 2004; Oke et al., 2017). We complied with the following steps to 
select appropriate urban–rural station pairs. (1) Preliminary delineation 
of urban and rural stations: Stations with an ISP greater than 20% and 
within urban boundaries were recognized as urban, while those with an 
ISP less than 20% as well as within rural boundaries were identified as 
rural (Wang et al., 2017). Note that the ISP of 20% was used because it is 
generally used as the division threshold between ‘non-urban’ and ‘low- 
density urban’ surfaces (Homer et al., 2004; Song et al., 2016). (2) 
Removal of urban and rural stations along urban–rural edges: The urban 
stations close to the urban–rural edges and the rural stations close to the 
urban areas were removed to improve the representativeness of urban 
and rural surfaces, respectively. (3) Further confirmation of urban–rural 
station pairs: Although nearly 30,000 stations of Ta measurements are 
available globally, very few are truly urban, and most cities with urban 
stations possess only one station within their urban boundaries once 
filtered by the above two criteria. Nevertheless, very few cities hold 
more than one station within urban or rural areas; in this case, the urban 

Table 1 
Detailed information on the satellite and auxiliary data.  

Variable Product Temporal 
resolution 

Spatial 
resolution 

Data 
year 

LST MYD11A1 Daily 1 km 2012 
EVI MYD13A2 16-day 1 km 2012 
Albedo MCD43B3 16-day 1 km 2012 
Land cover type MCD12Q1 Yearly 500 m 2012 
Population GPWv411 Five years 30 arc s 2010 
Elevation GTOPO30 – 30 arc s – 
Impervious 

surface area 
GAIA Yearly 30 m 2012 

Global urban 
boundary 

GUB Five years – 2010  
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station with the largest ISP (highest urbanization level) and the rural 
station with the smallest ISP (least affected by urbanization) were 
combined as a station pair (Wang et al., 2017). Following the above 
filtering procedures, a total of 366 cities were selected globally, 
including 355 cities in the Northern Hemisphere and 11 cities in the 
Southern Hemisphere. We acknowledge that uncertainties may occur in 
the calculation of CUHII by pairing urban and rural stations because of 
the high heterogeneity in terms of local climate zones (Stewart, 2011; 
Stewart, 2019; Stewart and Oke, 2012). Nevertheless, usable urban 
stations, especially on a global scale, remain very limited. A sensitivity 
analysis of this issue is thus provided in Section 5.2.2. 

3.2. Calculation and simultaneous investigation of SUHII and CUHII 

3.2.1. Calculation of SUHII and CUHII 
The Ts–based SUHII and Ta–based CUHII were calculated using the 

following formula (Imhoff et al., 2010; Tam et al., 2015): 
{

SUHII = Ts_u − Ts_r
CUHII = Ta_u − Ta_r

(1)  

where Ts_u and Ts_r are the mean urban and rural Ts, respectively, and 
Ta_u and Ta_r denote the Ta of the associated urban–rural station pairs. 

Here, SUHII was calculated based on all the urban and rural pixels, 
while CUHII was calculated by urban–rural station pairs. Considering 
these two different definitions, we further calculated SUHIIpixel based on 
Ts at the pixels where the station pairs are located, given as: 

SUHIIpixel = Tpixel s u − Tpixel s r (2)  

where Tpixel_s_u and Tpixel_s_r denote the Ts at the pixels where the urban 
and rural stations are located, respectively. More details on the different 
representations between SUHII and CUHII are presented in Section 
5.2.1. 

3.2.2. Simultaneous investigation of SUHII and CUHII 
The differences in spatiotemporal patterns between SUHII and CUHII 

across climate zones were examined simultaneously from the following 
aspects, including the investigation of (1) SUHII and CUHII for the 
daytime and nighttime, respectively, (2) day–night difference of SUHII 
and CUHII, and (3) seasonal variations of SUHII and CUHII.  

(1) SUHII and CUHII for the daytime and nighttime: Daytime and 
nighttime SUHII (SUHIIday and SUHIIngt) were calculated based 
on the Aqua/MODIS Ts. Because hourly Ta data are unavailable 
on a global scale, the monthly mean maximum and minimum Ta 
were considered as substitutes for the daytime Ta (i.e., CUHIIday) 
and nighttime Ta (i.e., CUHIIngt), respectively. We also 
acknowledge that the acquisition time difference between Ts and 
Ta may introduce uncertainties into the associated investigations; 
therefore, a detailed discussion on this issue is given in Section 
5.2.3.  

(2) Day–night difference of SUHII and CUHII: The difference between 
daytime and nighttime SUHII (ΔSUHII) and CUHII (ΔCUHII), also 
known as urbanization-induced variations in the diurnal tem
perature range of Ts (denoted as ΔDTRLST) and Ta (denoted as 
ΔDTRSAT) (Huang et al., 2017; Wang et al., 2007), was calculated 
using the following formula: 

ΔUHII = UHIIday − UHIIngt =
(
Tu_day − Tu_ngt

)
−
(
Tr_day − Tr_ngt

)

= DTRu − DTRr = ΔDTR (3)  

where UHIIday and UHIIngt represent SUHII (CUHII) during the daytime 
and at night, respectively; Tu_day, Tr_day, Tu_ngt, and Tr_ngt denote the Ts 
(Ta) of urban and rural areas during the daytime and nighttime, 
respectively; DTRu and DTRr are the diurnal temperature ranges of 
urban and rural areas, respectively; and ΔDTR is the urbanization- 

induced variation in the diurnal temperature range.  

(3) Seasonal variations in SUHII and CUHII: The SUHII and CUHII 
were averaged by season in each city, and the seasonal variations 
in SUHII and CUHII were investigated in each climate zone for the 
daytime and nighttime, respectively. 

3.3. Examination of controls of SUHII and CUHII 

This study mainly examined the impacts from surface properties (i.e., 
ΔEVI, ΔISP, ΔWSA), overall urbanization metric (expressed by the 
logarithm of urban population, i.e., log(P)) and climatic controls (i.e., 
Tmax, Tmin, PREP) on SUHII and CUHII from both global and climatic 
perspective, primarily considering their accessibility at a large scale as 
well as the widespread analysis of these controls in previous studies 
(Clinton and Gong, 2013; Lai et al., 2021; Li et al., 2020a; Manoli et al., 
2019; Peng et al., 2012; Venter et al., 2021; Zhao et al., 2014). Corre
sponding to the definitions of SUHII and CUHII (Section 3.2.1), the 
associated ΔEVI, ΔISP, and ΔWSA were calculated based on all the 
urban and rural pixels and urban–rural station pairs, respectively. Given 
the unavailability of sub-pixel imperviousness information, the ΔISP 
corresponding to the station-based CUHII was calculated as the differ
ence in ISP between the 200-m buffer zones of the urban–rural station 
pairs (Wang et al., 2017). The associated Tmax, Tmin, and PREP corre
sponding to SUHII and CUHII were all derived from the mean value of 
rural background when investigating the impacts from background 
climate on these two types of UHIs. We also acknowledge that the 
different definitions of SUHII and CUHII may introduce additional un
certainties into the investigation of their controls, and more detailed 
discussions on this issue will therefore be given in Section 5.2.1. 

4. Results 

4.1. Spatiotemporal pattern of SUHII and CUHII 

4.1.1. Spatiotemporal pattern of SUHII 
The annual mean SUHII across the selected cities is 1.7 ± 1.5 ◦C 

(mean ± Std) during the daytime (Fig. A1) and 1.1 ± 0.8 ◦C (mean ±
Std) at nighttime (Fig. A2), respectively. In addition, the SUHII was 
higher during the daytime than at night in 65% of the cities. From the 
zonal perspective, the daytime SUHII averaged for the cities in the 
equatorial zone is the highest (2.3 ◦C), followed by that in the warm 
temperate (2.0 ◦C) and snow climates (1.9 ◦C). The daytime SUHII 
reaches the lowest and is even negative in an arid climate (− 0.4 ◦C). In 
comparison, at night, the largest SUHII appears in the arid zone (1.8 ◦C), 
followed by that in the equatorial (1.4 ◦C), snow (1.0 ◦C), and warm 
temperate climates (0.9 ◦C). Both daytime and nighttime SUHII are 
found to be positive in most cities; only 12% of the cities during the day 
and 7% of the cities at night are characterized by a negative SUHII, that 
is, the occurrence of surface urban cool island (SUCI). We do not elab
orate on the spatiotemporal patterns of SUHII here, as they are mostly 
consistent with previous findings on a global scale (Chakraborty and 
Lee, 2019; Clinton and Gong, 2013; Li et al., 2020b; Peng et al., 2012). 

4.1.2. Spatiotemporal pattern of CUHII 
The annual mean CUHII across all cities was 0.6 ± 1.3 ◦C (mean ±

Std) during the day (Fig. 2) and 0.8 ± 1.4 ◦C (mean ± Std) at night 
(Fig. 3), and the nighttime CUHII was higher than the daytime CUHII in 
65% of the cities. Increased nighttime CUHII and the higher number of 
cities at night are anticipated due to the much lower nocturnal cooling 
rate over urban canyons (Anniballe et al., 2014; Oke et al., 2017; Wong 
et al., 2011). 

During the day, the annual mean CUHII in the warm temperate zone 
was highest (0.7 ◦C), followed by that in the snow zone (0.6 ◦C) and arid 
zone (0.4 ◦C), whereas the CUHII reaches its lowest in the equatorial 
zone (− 0.3 ◦C). Positive CUHII occurs in a large proportion (67%) of 
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cities; negative CUHII (i.e., canopy urban cool island, CUCI) appears in a 
very few cities in the tropics, but it occurs in approximately 30% of the 
cities in other climate zones. Two reasons could explain the occurrence 
of CUCI. First, the shading of high-rise buildings in some cities would 
block daytime solar radiation, especially in the early morning when the 
solar altitude is low, leading to a slower heating rate on urban surfaces 
(Chow and Roth, 2006). Second, for some cities, especially in the arid 
zone, the urban vegetation coverage can be even larger than that over 
rural bare lands, resulting in reduced urban Ta due to stronger evapo
transpiration (Brazel et al., 2000). For example, Chihuahua, a city of 
Mexico located in the Chihuahua Desert, is characterized by a significant 
daytime CUCI throughout the year (the annual mean daytime CUHII is 
− 0.4 ◦C). 

At night, the annual mean CUHII in the warm temperate (0.8 ◦C) and 
snow zone (0.8 ◦C) are slightly greater than those in the arid (0.7 ◦C) and 
equatorial zone (0.5 ◦C). While the majority (73%) of cities have positive 
CUHII, the CUCI was identified in all the climate zones, and the 

percentages of cities exhibiting a CUCI are relatively higher in the warm 
temperate (21%), snow (28%), and arid (37%) zones than in the equa
torial zone, within which a CUCI is observed only in a few cities. These 
percentages are relatively high, considering the prevalence of heat 
islands at the canopy layer at night. One major reason is the use of the 
monthly mean minimum Ta rather than daily minimum Ta on calm clear- 
sky days for the calculation of nighttime CUHII, mostly because of the 
difficulty and even impossibility of obtaining in situ hourly urban–rural 
Ta pairs for hundreds of cities on a global scale (refer to Section 3.1.2). 
Our identified percentage (27%) of cities with negative nighttime CUHII 
are on par with (slightly higher) the proportion (16%) of previous 
identifications that used the monthly mean Ta data to examine CUHIs 
(Debbage and Shepherd, 2015). Here, the slightly higher percentage 
may be attributed to the involvement of a greater number of small cities 
where the CUCI occurs more frequently in the current study when 
compared with the selection of megacities only in Debbage and Shep
herd. (2015). Physically, when using monthly mean data, the higher 
occurrence of CUCI than anticipated could be a result of incorporating 
days with heavy rainfall and cloud cover in the wet season, during which 
the CUCI can be developed (Hu et al., 2019; Morris et al., 2001). We 
recognize that uncertainties may be induced by using monthly mean 
data, especially in terms of the SUHI–CUHI investigation. A detailed 

Fig. 2. Spatiotemporal patterns of daytime CUHII in different seasons. The 
percentages in brackets indicate the proportion of cities with positive CUHII. 
Spring, summer, autumn, and winter are defined as the period from March to 
May, June to August, September to November, and December to February 
respectively across the Northern Hemisphere, while the definition is reversed 
for the Southern Hemisphere. 

Fig. 3. Spatiotemporal patterns of nighttime CUHII in different seasons.  
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sensitivity analysis is provided in Section 5.2.3. 

4.2. Simultaneous investigation of spatiotemporal variations of SUHII and 
CUHII 

4.2.1. Simultaneous investigation of seasonal variations of SUHII and 
CUHII 

SUHII and CUHII differ greatly during the day, but they are relatively 
close at night (Fig. 4). During the day, the seasonal patterns of SUHII are 
relatively similar across different climate zones, while those of CUHII 
significantly depend on the climate zone. At night, the seasonal patterns 
for SUHII and CUHII were both dependent on the climate zone. 

During the day, the annual mean SUHII is higher than CUHII by 1.1 
± 1.9 ◦C (mean ± Std) across selected cities (Fig. 4a). The difference 
between SUHII and CUHII is largest in the equatorial zone (2.6 ◦C on 
average), followed by the warm temperate zone (1.4 ◦C) and snow zone 
(1.3 ◦C). We observed an opposite phenomenon for cities in the arid 
climate, under which the CUHII becomes higher than SUHII by 0.8 ◦C 
(refer to Rectangle A in Fig. 4a). The reversed urban–rural contrast in 
vegetation abundance in the arid and semi-arid regions may contribute 
to the lower SUHII through the appearance of significant daytime SUCI 
(Huang et al., 2017). Furthermore, the difference between the SUHII and 
CUHII averaged for all the chosen cities reaches a maximum in summer 
(2.2 ◦C) and minimum in winter (0.4 ◦C), mainly because of the stronger 
solar radiation associated with a greater urban–rural difference in 
vegetation coverage in summer, which enlarges the difference between 
Ts and Ta (Sun et al., 2015; Wang et al., 2017). 

At night, SUHII and CUHII are much closer. The annual mean 
nighttime SUHII is higher than CUHII by only 0.3 ± 1.5 ◦C (mean ± Std) 
(Fig. 4b). This difference is the largest in the arid zone (1.1 ◦C), followed 
by the equatorial zone (0.8 ◦C), and is relatively small in the snow zone 
(0.3 ◦C) and warm temperate zone (0.1 ◦C). Similarly, the difference in 
nighttime SUHII and CUHII was also largest in summer (0.5 ◦C) and 
smallest in winter (− 0.01 ◦C). Note that the differences between SUHII 
and CUHII during both the day and at night quantified here are generally 
analogous to several previous studies conducted at a large scale (Venter 
et al., 2021; Zhang et al., 2014b), which further verifies the reliability of 
our findings. Nevertheless, there are truly slight differences between 
these two types of UHIIs obtained in this study and those in Venter et al. 
(2021) (i.e., the differences between SUHII and CUHII quantified here 
are slightly lower). The discrepancy in dataset and study area, together 

with the augmented UHIIs during heat wave periods (Zhao et al., 2018), 
might contribute to such slight differences. 

In terms of seasonal patterns, the summer daytime SUHII reaches the 
strongest for all the climate zones (Fig. 4a), while the seasonal variations 
of daytime CUHII are diverse across climate zones (Fig. 4a). In the 
equatorial zone, CUHII was stronger in spring and winter than in sum
mer and autumn. In the arid zone, CUHII reached the maximum and 
minimum values in summer and winter, respectively. The seasonal 
variations of CUHII in the warm temperate and snow zones were very 
small (with an amplitude of variation less than 0.2 ◦C). At night, the 
seasonal patterns of SUHII significantly depend on the climate zone 
(Fig. 4b). The SUHII in the warm temperate and snow zones reach the 
strongest in summer and the weakest in winter, while in the equatorial 
zone, maximum and minimum SUHII occurs in summer and autumn 
respectively. For the arid zone, the strongest SUHII is observed in spring. 
The seasonal dynamics of CUHII also differed in various zones (Fig. 4b). 
For CUHII, its maxima and minima occur in summer and winter 
respectively in both warm temperate and snow zones, whereas in arid 
zone, spring and autumn possess the maxima and minima respectively. 
In the tropics, CUHII was significantly lower in summer than in other 
seasons (Fig. 4b). 

4.2.2. Simultaneous investigation of diurnal variations of SUHII and CUHII 
The diurnal variations (i.e., day–night difference) of the SUHII (i.e., 

ΔSUHII) and CUHII (ΔCUHII) across climate zones are displayed in 
Fig. 5. As indicated in Section 3.2.2, the ΔSUHII and ΔCUHII are 
equivalent to the urbanization-induced variations in the Ta– and 
Ts–based DTR (i.e., ΔDTRLST and ΔDTRSAT), respectively (Huang et al., 
2017; Wang et al., 2007). 

The annual mean ΔSUHII and ΔCUHII averaged across all the 
selected cities are 0.6 ± 1.8 ◦C (mean ± Std) and − 0.2 ± 1.6 ◦C (mean ±
Std), respectively, implying that urbanization leads to an increase in 
DTRLST and a decrease in DTRSAT (Fig. 5). However, we observe the 
opposite phenomenon for cities in an arid climate, which is character
ized by a negative annual mean ΔCUHII (− 0.2 ◦C) along with a negative 
ΔSUHII (− 2.2 ◦C) (Rectangular A in Fig. 5). The discrepancy between 
arid and other climates may again be attributable to the greater vege
tation abundance in urban areas than in rural areas in arid climates 
(Huang et al., 2017). From a seasonal perspective, the seasonal varia
tions of ΔSUHII are significant, characterized by a high ΔSUHII in 
summer across almost all climate zones, while the seasonal patterns of 

Fig. 4. Seasonal variations of SUHII (red) and CUHII (blue) during day (a) and night (b) across different climate zones. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 
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ΔCUHII are inconsistent for cities in different climate zones (Fig. 5). In 
the equatorial zone, ΔCUHII is significantly lower in autumn than in 
other seasons; in the arid zone, ΔCUHII is the strongest in summer and 
weakest in winter, whereas in the warm temperate and snow zones, the 
seasonal variations of ΔCUHII are very small, with an amplitude of 
variation less than 0.15 ◦C. 

4.3. Simultaneous examination of impacts from controls on SUHII and 
CUHII 

4.3.1. Simultaneous examination of impacts from controls on SUHII and 
CUHII across the globe 

The impacts from surface properties (ΔEVI, ΔISA, and ΔWSA), 
population size, and climatic controls (Tmax, Tmin, and PREP) on SUHII 

Fig. 5. Seasonal variations of ΔSUHII (red) and ΔCUHII (blue) across various climate zones. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 6. Statistical significance (denoted by the correlation coefficient r) between various controls and the SUHII and CUHII during the day and night in spring (Spr.), 
summer (Sum.), autumn (Aut.), winter (Win.), and across the annual (Ann.) cycle. The asterisk (*) indicates statistical significance at the 0.05 level, and (**) suggests 
statistical significance at the 0.01 level. 
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and CUHII across the globe are shown in Figs. 6 and 7, respectively. The 
results show that these controls exert different impacts on these two 
types of UHIs. 

In terms of ΔEVI and ΔISP, both SUHII and CUHII are negatively 
correlated with ΔEVI and positively correlated with ΔISP in general, 
although the associated statistical significance is different. Specifically, 
during the day, ΔEVI exerts a larger impact on SUHII (r = − 0.51, p <
0.01) than on CUHII (r = − 0.12, p < 0.05), while the relationships be
tween ΔISP and CUHII (r = 0.10) and SUHII (r = − 0.05) are both 
insignificant. At night, both the impacts of ΔEVI and ΔISP on CUHII (r =
− 0.38, p < 0.01 and r = 0.18, p < 0.05, respectively) are greater than 
those on SUHII (r: − 0.07, and 0.13, respectively) (Fig. 6). Although 
vegetation coverage and ISP are highly correlated (Ridd, 1995), we 
observe that their impacts on SUHII and CUHII are not entirely identical. 
We speculate that this is likely because vegetation coverage regulates 
the UHI mainly by its enhanced evapotranspiration capacity (Elmes 
et al., 2017; Sun et al., 2015), while ISP regulates the UHI through 
building geometry in addition to its decrease in evapotranspiration in 
contrast to vegetation coverage (Mirzaee et al., 2018). 

In terms of ΔWSA, there were significant correlations between SUHII 
and ΔWSA, with a positive relationship (r = 0.35, p < 0.01) during the 
day and a negative relationship (r = − 0.34, p < 0.01) at night (Fig. 6), 
which is consistent with previous studies at the global scale (Peng et al., 
2012). By comparison, CUHII possesses a weak positive and negative 
correlation with ΔWSA during the day (r = 0.03) and at night (r =
− 0.09) respectively (Fig. 6). 

In terms of population size, both SUHII and CUHII are, in general, 
positively correlated with log(P) during the day and night. During the 
day, the impacts from log(P) on both SUHII and CUHII are relatively 
small and the former (r = 0.09) is slightly weaker than that the latter (r 
= 0.15, p < 0.05) (Fig. 6). With the increase in population size, the 
annual daytime SUHII first decrease and then increase, whereas the 

CUHII holds the opposite situation (Fig. 7e). At night, log(P) exerts a 
significantly larger impact on both SUHII and CUHII than during the day 
(r = 0.43 and 0.25 respectively, p < 0.01) (Fig. 6). With the increase in 
population size, the annual nighttime SUHII steadily increased, while 
the annual nighttime CUHII did not (Fig. 7e). Our identified correlations 
between CUHII and log(P) are relatively weaker than those in previous 
studies such as Oke (1973), which can be due to the use of monthly mean 
Ta data rather than measurements under ideal conditions (i.e., calm and 
clear nights). 

Interestingly, the impacts of population size on daytime SUHII turn 
into negative in winter, and notably, a larger population size can be 
accompanied by a smaller daytime SUHII (Fig. 7d). The occurrence of 
the SUCI over a part of megacities (e.g., Beijing) in winter as a result of 
the transition of rural background from vegetation surfaces (crops) into 
bare soil (due to crop harvesting) may contribute to this reversed phe
nomenon (Huang et al., 2017). 

In terms of climatic controls, the impacts of Tmax and Tmin on the 
UHIIs are similar. For example, there is a negative relationship between 
Tmax and these two types of UHIIs during the day, yet with a larger in
fluence on SUHII (r = − 0.18, p < 0.01), while the relationships between 
Tmax and SUHII and CUHII are both insignificant at night. For PREP, the 
significant positive correlation between the annual mean PREP and 
SUHII during the day (r = 0.61, p < 0.01) and the associated negative 
correlation during the night (r = − 0.31, p < 0.01) are generally 
consistent with previous studies (Lai et al., 2021; Peng et al., 2012; Zhao 
et al., 2014). This is mainly due to the significantly decreased rural 
surface temperature with higher soil moisture after precipitation (He, 
2018). In contrast, the relationships between PREP and CUHII are very 
weak both during the day and at night. 

Fig. 7. Changes in SUHII and CUHII along with population size. The cases for the seasonal UHI intensities are provided in (a) to (d) while that for the annual mean is 
given in (e). The label * is used to highlight the negative relationship between the winter daytime SUHII and population size contrasting with the positive one for the 
other cases. The bar indicates the upper end of the 95% confidence interval. 
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4.3.2. Simultaneous examination of impacts from controls on SUHII and 
CUHII across various climates 

The impacts from surface properties (i.e., ΔEVI, ΔISP, and ΔWSA), 
overall urbanization metric (i.e., log(P)), and climatic controls (i.e., 
Tmax, Tmin, and PREP) on SUHII and CUHII across the arid, warm 
temperate, and snow climates were further analyzed (Tables S1, S2, and 
S3). Note that the results for equatorial climate were not included due to 
the weak correlation coefficients (p < 0.05) between controls and 
SUHII/CUHII over such a zone owing to the small number of cities (only 
10 cities). 

The results indicate that the impacts from the above controls on the 
two types of UHIIs are affected by background climate. Specifically, for 
ΔEVI, the annual mean ΔEVI exerts a larger impact on SUHII than on 
CUHII during the day in all three climates, whereas at night, it influences 
CUHII more in warm temperate and snow zones but influences SUHII 
more in arid climate. As to ΔWSA, the relationship between the annual 
mean ΔWSA and SUHII during the day is positive in all these three cli
matic zones; while at night it becomes opposite in warm temperate and 
snow zones. The relationship between ΔWSA and CUHII is significantly 
negative only at night in snow climate. For PREP, its impacts on SUHII 
are similar in warm temperate and snow climates (i.e., positive during 
the day yet negative at night), while the arid zone holds a different 
situation (i.e., positive at both day and night). In contrast, the re
lationships between the annual mean PREP and CUHII are insignificant 
in all climates both during the day and at night. 

5. Discussion 

5.1. Clarifications and perspectives 

The SUHI and CUHI are two distinctly different yet complementary 
components of the UHI effect (Manoli et al., 2020b; Martilli et al., 
2020b). The simultaneous investigation of these two types of UHIs can 
help comprehensively describe the vertical structure of UHI and can 
better reflect urban surface-atmosphere interaction, which is critical for 
a better understanding of urban surface energy budget (Jin, 2012; 
Venter et al., 2021). Furthermore, considering both SUHI and CUHI are 
closely related to thermal comfort, the simultaneous investigation of 
these two can also help better evaluate urban thermal environment 
(Venter et al., 2021; Wang et al., 2020). 

In the past few years, the simultaneous investigation of SUHI and 
CUHI has received more attention in the urban climate community 
(Anniballe et al., 2014; Chakraborty et al., 2017; Ho et al., 2016; Hu 
et al., 2019; Venter et al., 2021; Wang et al., 2020; Yang et al., 2020; 
Zhang et al., 2014b). Nonetheless, these previous studies have mainly 
focused on a limited number of cities and/or background climates, 
mostly due to the difficulty of obtaining consistent urban Ta measure
ments over global cities. In other words, the differences in the spatio
temporal variations between SUHI and CUHI remain largely not clear 
over global cities. Besides, the dissimilar impacts of various typical 
controls on these two types of UHIs have not been elucidated adequately 
across various background climates at a global scale. 

This study compared SUHI and CUHI over global cities by selecting 
appropriate urban–rural station pairs consistently from nearly 30,000 
meteorological stations across the globe. The meteorological dataset as 
well as the used strategy for filtering urban–rural station pairs are ex
pected to be useful to provide a reliable data source for future urban 
climate studies related to CUHI and the SUHI–CUHI comparison across 
the globe. This current investigation differs from previous SUHI–CUHI 
comparison studies in that (1) we incorporated hundreds of cities within 
a great variety of background climates worldwide as well as in that (2) 
we examined the statistical relationships between SUHII/CUHII (espe
cially CUHII) and several types of controls (e.g., surface property, 
background climate, and urban population) over global cities. 

Practitioners may suggest that the global (or large-scale) SUHI–CUHI 
investigation may be achievable based on global Ta estimates that are 

modeled based on a series of predictors, including satellite Ts data. 
However, the SUHI–CUHI comparison can likely be impacted and even 
distorted based on the combination of satellite Ts data and modeled Ta 
data, which are now closely related to the satellite Ts data. Therefore, 
consistent urban Ta observations for cities over a large spatial scale are 
necessary to facilitate the SUHI–CUHI comparison. It has been noticed 
that a small part of the Ta measurements from the Global Historical 
Climatology Network were installed over surfaces with a high ISP and 
can therefore be perceived as urban stations, based on which the 
SUHI–CUHI comparison could be conducted (Zhang et al., 2014b). 
Nevertheless, this previous large-scale study only focused on continental 
United States. A very recent study demonstrated that consistent urban Ta 
observations could also be obtained from crowdsourced data (Venter 
et al., 2021), yet this study only focused on cities in Europe, where arid 
and equatorial climates are mostly absent. It is also worthy to note that, 
though with different types of Ta measurements, some of our findings 
echo well with those by Venter et al. (2021). For example, this study and 
Venter et al. (2021) gained a similar finding that SUHII is significantly 
larger than CUHII during the day while the former one is only margin
ally greater than its counterpart at night. 

Considering the different characteristics of satellite Ts and in situ Ta 
data, we acknowledge that uncertainties may exist in this study. First, 
the use of different definitions between SUHII and CUHII may affect the 
SUHI–CUHI investigation. Second, the calculation of CUHII may not be 
adequately accurate by limited urban–rural station pairs of Ta data. 
Finally, the SUHI–CUHI investigation may also be affected by the 
acquisition time difference between Ts and Ta, as well as the time dif
ference of measuring Ta in urban and rural stations (because the times at 
which they reach the monthly mean maximum and minimum differ). 
More sensitivity analysis related to the issues presented above is pro
vided as below. 

5.2. Sensitivity analysis 

5.2.1. Impacts from different definitions between SUHII and CUHII 
In this study, SUHII was calculated based on all urban and rural 

pixels, mostly because the overall SUHI can be better represented by this 
approach than by using only the pixels at the locations of station pairs 
due to the high heterogeneity of urban surfaces (Stewart, 2011; Stewart, 
2019; Stewart and Oke, 2012). This is also because of the widespread 
acceptance of using all available urban and rural pixels to calculate the 
SUHII (Clinton and Gong, 2013; Peng et al., 2012). Here, CUHII was 
estimated using urban–rural station pairs. This sampling difference may 
affect the SUHI–CUHI investigation. Thus, we conduct a sensitivity 
analysis by additionally calculating SUHII based only on the Ts of the 
pixels where the station pairs are located (termed SUHIIpixel) (Fig. 8). 
The results show that the annual mean SUHIIpixel is noticeably greater 
than SUHII during the day while it is only slightly higher than SUHII at 
night, mainly because the calculation of SUHIIpixel only incorporated a 
pixel pair with a large ISP value (for the urban station pixel) and a low 
ISP value (for the rural station pixel). This indicates that the different 
SUHII definitions would exert a certain impact on the numerical dif
ference between the SUHII and CUHII. For example, the annual mean 
SUHIIpixel is higher than SUHII by approximately 0.9 ◦C and 0.1 ◦C 
during the daytime and at night, respectively, so when compared with 
the SUHII, the annual mean differences between SUHIIpixel and CUHII 
are relatively higher, which are 2.0 ◦C during the day (i.e., 1.1 ◦C +
0.9 ◦C) and 0.4 ◦C at night (i.e., 0.3 ◦C + 0.1 ◦C); and the annual mean 
ΔSUHII (ΔDTRLST) based on the Ts of the designated pixels only is also 
greater (i.e., 1.4 ◦C). Despite these differences in magnitude, we note 
that the diurnal and seasonal patterns of the SUHII and SUHIIpixel remain 
hardly changed, and the issue related to such a sampling barely affects 
the diurnal and annual behaviors of the SUHI. 

The different definitions of these two types of SUHII may also affect 
the examination of their controls, we therefore analyzed such un
certainties by comparing the statistical relationships between the 

H. Du et al.                                                                                                                                                                                                                                      



ISPRS Journal of Photogrammetry and Remote Sensing 181 (2021) 67–83

77

controls and the two types of SUHIIs (i.e., SUHII and SUHIIpixel) (Fig. 9). 
The results indicate that, for most of the controls (i.e., ΔEVI, ΔWSA, log 
(P), Tmax, Tmin, and PREP), there are only numerical differences in the 
correlation coefficient (r) and their signs (i.e., positive or negative) are 
basically consistent when using either SUHIIpixel or SUHII for analysis; 

while for ΔISP, both the r value and its sign can be different. This sug
gests that the different SUHII definitions would also exert a certain 
impact on the examination of the controls of SUHII and CUHII, espe
cially for ΔISP. 

Fig. 8. Seasonal (a-d) and annual mean (e) SUHIIpixel, SUHII, and CUHII for all cities. The bar indicates the upper end of the 95% confidence interval.  

Fig. 9. Statistical significance (r) between various controls and SUHIIpixel, SUHII, and CUHII. The asterisk (*) indicates statistical significance at the 0.05 level.  
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5.2.2. Impacts from insufficient representativeness of urban–rural station 
pair 

The criteria adopted for selecting urban–rural station pairs in this 
investigation include: (1) whether the station is within the urban or rural 
boundary and (2) whether the ISP in a 200-m buffer zone around the 
station is greater or less than 20%. Note that the locations of the station 
pairs may largely affect the representativeness of urban or rural Ta and, 
therefore, the estimation of CUHII (Stewart, 2011; Stewart, 2019). 

To evaluate the representativeness of station pairs, we designed two 
indicators: (1) the ISP difference in the 200-m buffer zone around the 
station pairs (ΔISP), and (2) the ratio of distance between the urban and 
rural stations to the urban center (ΔDist%) (Fig. 10). A larger ΔISP 
means a greater difference in urbanization level between the station 
pairs and thus a better representativeness for urban–rural contrast. 
Similarly, a smaller ΔDist% indicates a shorter distance between the 
urban station and urban center and a longer distance between the rural 
station and urban center, which also suggests a better representativeness 
of the station pairs. To display the representativeness of the selected 
station pairs, we visually present the locations of the urban–rural station 
pairs and their surrounding ISPs in a part of the case cities with high- 
resolution images obtained from Google Earth (Fig. 11). The results in 
Figs. 10 and 11 show that most urban–rural station pairs possess a 
relatively large ΔISP along with a fairly small ΔDist%, implying the high 
representativeness of the station pairs. Specifically, the average ΔISP of 
all cities is 0.73 ± 0.21 (mean ± Std) with a minimum of 0.14; and the 
average ΔDist% of all cities is 0.30 ± 0.22 (mean ± Std) with a minimum 
of 0.84. Lincoln, for example, has a ΔISP of 1.0, with its urban station 
close to the urban center and a rural station at the edge of its rural 
background (Fig. 11). 

Despite the relatively high representation of the chosen urban–rural 
station pairs in this study, the dichotomy division of urban–rural sur
faces may still have shortcomings (Stewart and Oke, 2012). Therefore, 
we further resort to hourly Ta data from abundant and densely distrib
uted stations in three case megacities (i.e., Beijing, Shenyang, and 
Guangzhou, all with > 100 stations (see Section 2.2.1) within different 
climate zones to further verify the uncertainties. The CUHII calculated 
by a large number of urban–rural station pairs is hypothesized to be the 

true value, based on which the uncertainty of CUHII estimated from a 
randomly selected urban–rural station pair is quantified. The detailed 
steps for the uncertainty analysis are as follows: (1) Delineation of urban 
and rural stations: according to the ISP threshold (20%) set in Section 
3.1.2, 116 urban and 26 rural stations, 73 urban and 15 rural stations, 
138 urban and 24 rural stations were retrieved in Beijing, Shenyang, and 
Guangzhou, respectively. (2) Calculation of true and possible observation 
values of CUHII: we first obtained various observation station pairs by a 
random combination of all the available urban and rural stations and 
acquired 3016 (116 × 26), 1095 (73 × 15), and 3312 (138 × 24) station 
pairs for these three cities, respectively. The true value is then denoted 
by averaging the CUHII of all station pairs, and the observation values 
are denoted by the CUHII of randomly selected station pairs. (3) Esti
mation of uncertainty with standard deviation (δ): in each city, the un
certainty of CUHII with limited station pairs is represented by the 
standard deviation. A smaller δ generally denotes less deviation and, 
accordingly, a higher representativeness of each station pair. 

The true values and standard deviations of CUHII for these three 
cities are presented in Fig. 12 a-c. The standard deviations (δ) are mostly 
within ± 1.5 ◦C both during the day and at night in these three cities. 
This deviation is nonnegligible for the calculation of CUHII and for the 
SUHI–CUHI investigation for a single city. However, it would hardly 
induce a large bias for the SUHII-CUHII investigation for dozens of and 
hundreds of cities on a global scale that our study focused on. This is 
mostly because the conclusions of this study are obtained by averaging 
the CUHII over all cities randomly distributed in various geographic 
environments; according to statistical theory, the δ of CUHII for n cities 

(
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑

(δ− δ)2

n− 1

√

) would be much smaller than the δ for a single city (Puga
chev, 2014). For example, the δ for all cities within the arid zone (n =
43) and snow zone (n = 110) would be less than 0.04 ◦C or even much 
lower, assuming that the δ of using a single urban–rural station pair for a 
single city is 1.5 ◦C. 

5.2.3. Impacts from data acquisition time differences 
The SUHI–CUHI investigation may also be impacted by the possible 

uncertainties induced by data acquisition time differences by using 
satellite-derived Ts and in situ monthly mean Ta. (1) The acquisition 

Fig. 10. The spatiotemporal patterns and the frequency histogram of the ΔISP (a-b) and the ΔDist% (c-d) between urban–rural station pairs. The solid curves are the 
fitted normal distributions, and the short-dashed lines represent the associated means. 
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times of the Aqua/MODIS daytime and nighttime Ts are approximately 
13:30 pm and 01:30 am, respectively; while those of the maximum and 
minimum) Ta are about 14:00 pm and 06:00 am, respectively. This 
means that there are acquisition time differences between the satellite Ts 
and in-situ Ta both for the day and at night. Such time differences for 
daytime and nighttime were termed δh1 and δh2, respectively. (2) There 
may also be a time difference between the daily maximum (or 

minimum) Ta between urban and rural areas. These daily extreme Ta 
values between urban and rural areas are termed δh3 and δh4, 
respectively. 

Here, we again analyze the uncertainties induced by the data 
acquisition time differences with the hourly Ta from densely distributed 
stations over the three megacities, including Beijing, Shenyang, and 
Guangzhou (Fig. 12 d-f). In terms of the acquisition time difference 

Fig. 11. Locations of urban–rural station pairs and their surrounding ISPs in a part of the chosen cities, with the upper subfigure presenting the locations of 
these cities. 
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between the satellite-derived Ts and in situ Ta, during the δh1 and δh2 
period (i.e., the period from the time of the daily maximum Ta to the 
daytime satellite overpass, and from the time of the daily minimum Ta to 
the nighttime satellite overpass, respectively), there is almost no varia
tion in CUHII in Shenyang and Guangzhou (i.e., the amplitude of vari
ation is less than 0.05 ◦C), and therefore, the acquisition time difference 
between Ts and Ta would barely affect the simultaneous investigation of 
SUHII and CUHII in these two cities. For Beijing, the amplitude of 
variation of CUHII is relatively higher (0.24 ◦C for daytime and 0.21 ◦C 
for nighttime, refer to the orange solid box and blue solid line box in 
Fig. 12 d-f). Although CUHII in some cities such as Beijing may be 
affected by δh1 and δh2, their impacts are anticipated to be significantly 
reduced by averaging the values of all cities for each climate zone and/ 
or on a global scale, as indicated in Section 5.2.2. 

In terms of δh3 and δh4 (i.e., the time difference of daily extreme Ta 
between urban and rural areas), it is apparent that δh4 is very small and 
therefore exerts little impact on CUHII in all three cities (refer to the blue 
dashed box in Fig. 12 d-f). The δh3 is also very small in Shenyang and 
Guangzhou, yet it is about 1 h in Beijing and its impact on the CUHII can 
be up to 0.17 ◦C (refer to the orange dashed box in Fig. 12 d-f). Once 
more, the relatively greater biases induced by δh3 were suppressed 
significantly by averaging the CUHII spatially and temporally. 

We also acknowledge that the SUHII derived from MODIS Ts under 
clear-sky conditions and the CUHII calculated from Ta under all-weather 
conditions may introduce uncertainties for the SUHI–CUHI investiga
tion. However, it is extremely difficult and even impossible to acquire 

hourly or daily Ta measurements from densely distributed urban stations 
on a global scale, and this uncertainty has not yet been analyzed. 

6. Conclusion 

Previous comparisons of the SUHI and CUHI are mostly limited to a 
single or few cities, and their associated spatiotemporal patterns and 
controls under various background climates, especially on a global scale, 
remain largely unknown. This study investigated the similarities and 
dissimilarities between SUHII and CUHII in terms of spatiotemporal 
variations and various controls over 366 global cities. The main con
clusions are as follows: 

First, the annual mean SUHII is higher than CUHII by 1.1 ± 1.9 ◦C 
(mean ± Std) during the day and 0.3 ± 1.5 ◦C (mean ± Std) at night. The 
difference between SUHII and CUHII reaches the greatest in the summer 
(i.e., 2.2 ◦C and 0.4 ◦C for the day and night, respectively) while the 
lowest in winter (i.e., 0.5 ◦C and − 0.01 ◦C for the day and night, 
respectively). The differences between SUHII and CUHII are also regu
lated by background climate, and the differences between SUHII and 
CUHII for cities in the equatorial, warm temperate, and snow climates 
are generally consistent with those of the global mean. However, the 
opposite phenomenon occurs during the day for cities in arid climate, 
where SUHII is lower than CUHII by 0.8 ◦C, possibly due to the signif
icant surface urban cool islands resulting from the higher vegetation 
coverage in urban than in rural areas over arid regions. The sensitivity 
analysis further indicates that, when compared with the SUHII 

Fig. 12. Monthly variations of CUHII in Beijing (a), Shenyang (b), and Guangzhou (c); and the associated hourly variations of the CUHII and Ta in urban and rural 
stations over these three megacities (d-f). The lines represent the CUHII calculated based on all usable station pairs, while the shades represent the standard de
viations of CUHII calculated based on randomly selected single station pairs. 
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(calculated based on all the urban and rural pixels), the annual mean 
difference between SUHIIpixel (based on only pixels where urban–rural 
station pairs are located) and CUHII increases both during the day 
(2.0 ◦C), and night (0.4 ◦C). 

Second, the annual mean day–night difference in SUHII (ΔSUHII) is 
generally positive (i.e., 0.6 ± 1.8 ◦C (mean ± Std)), while such a dif
ference in CUHII (ΔCUHII) becomes negative (i.e., − 0.2 ± 1.6 ◦C (mean 
± Std)). These values suggest that urbanization increases the Ts–based 
DTR while decreases the Ta–based DTR. In addition, ΔSUHII was 
significantly higher in summer (1.5 ◦C) than in winter (0.2 ◦C), while the 
seasonal variation of ΔCUHII was minimal (with an amplitude of vari
ation less than 0.15 ◦C). The urbanization effect on DTR also differs for 
cities in an arid climate, with a negative annual mean ΔCUHII (− 0.2 ◦C) 
along with a negative ΔSUHII (− 2.2 ◦C), implying that urbanization in 
the arid climate decreases Ta–based DTR and Ts–based DTR simulta
neously. Similarly, the annual mean ΔSUHII (ΔDTRLST) based on 
SUHIIpixel is also greater than that based on SUHII (i.e., 1.4 ◦C). 

Third, in terms of the controls, the impacts of vegetation abundance 
and ISP on SUHII and CUHII are not identical, although they are highly 
correlated over cities. Specifically, the urban–rural difference in ISP 

exerts an insignificant impact on both SUHII and CUHII during the day, 
yet it poses a larger impact on CUHII at night, whereas the difference in 
vegetation abundance exerts a greater impact on SUHII than on CUHII 
during the day yet the situation is reversed at night. In addition, the 
impacts of population size on daytime SUHII and CUHII are very close 
and relatively small, but their impacts on nighttime SUHII and CUHII are 
greater. For climatic controls, the negative impact from annual mean 
Tmax is greater on SUHII than on CUHII during the day. The relationship 
between annual mean PREP and SUHII is positive during the day but 
negative at night, while for CUHII, their relationship is weakly negative 
regardless of day and night. 

Note that the aforementioned results related to the SUHII-CUHII 
investigation are feasible for a large number of cities as involved in 
this study, although they may not be sufficiently robust for a single city 
owing to the use of limited urban–rural pairs of Ta measurements. 
Nevertheless, this study overcomes the deficiencies of previous com
parisons between these two types of UHIs by conducting a simultaneous 
SUHI–CUHI investigation at a global scale characterized by a great va
riety of background climates. Note that it may be more climatologically 
meaningful to examine the SUHII-CUHII difference under various cli
mates at a global scale, but decision makers should also keep a watchful 
eye on the climate zone where the specific city is located when 

Fig. A1. Spatiotemporal patterns of SUHII during the day in different seasons. 
The percentages in the brackets indicate the proportion of cities with positive 
SUHII accounting for the total number of selected cities. 

Fig. A2. Spatiotemporal patterns of SUHII during the night in different seasons.  
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formulating appropriate heat mitigation strategies. Future in
vestigations of SUHII and CUHII can be further promoted by using 
hourly in situ Ta data obtained from densely distributed stations as well 
as Ts data with relatively higher spatiotemporal resolution obtained by 
combining LSTs acquired from both polar and geostationary orbiters. 
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