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Falu Hong a, Wenfeng Zhan a,b,*, Frank-M. Göttsche c, Jiameng Lai a, Zihan Liu a, Leiqiu Hu d, 
Peng Fu e, Fan Huang a, Jiufeng Li a, Hua Li f, Hua Wu g 

a Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, 
Jiangsu 210023, China 
b Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, Jiangsu 210023, China 
c Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany 
d Department of Atmospheric and Earth Science, The University of Alabama in Huntsville, Huntsville, AL 35805, USA 
e Department of Plant Biology, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA 
f Aerospace Information Research Institute, Chinese Academy of Sciences, China 
g State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of 
Sciences, Beijing 100101, China   

A R T I C L E  I N F O   

Edited by: Jing M. Chen  

Keywords: 
Land surface temperature 
Thermal remote sensing 
Sampling bias 
Annual temperature cycle 
Diurnal temperature cycle 
Polar orbiters 
MODIS 

A B S T R A C T   

Remotely sensed and accurate daily mean land surface temperature (Tdm) is valuable for various applications 
such as air temperature estimation and climate change monitoring. However, most traditional methods 
employed by the remote sensing community estimate Tdm by averaging the – usually few – observed cloud-free 
land surface temperatures (LSTs). Such estimates can have large sampling bias, especially for tandem polar 
orbiters, due to their sparse sampling of diurnal LST dynamics and the unavailability of under-cloud LSTs. To 
estimate accurate Tdm based on thermal observations from tandem polar orbiters, here we propose a simple yet 
robust framework that combines the annual temperature cycle (ATC) and the diurnal temperature cycle (DTC) 
models (termed the ADTC-based framework). The ATC model is used to reconstruct daily instantaneous under- 
cloud LSTs, based on which the DTC model is employed to establish diurnally continuous LST dynamics for 
estimating Tdm. The proposed framework is validated with geostationary LST observations and in-situ thermal 
measurements under both cloud-free and overcast conditions. The validations show that, under cloud-free 
conditions, the ADTC-based framework is able to reduce the positive sampling bias obtained with simple 
averaging (> 2.0 K) and yields a mean absolute error (MAE) of approximately 0.5 K. Under overcast conditions, 
the ADTC-based framework yields MAEs of 1.0 K and 0.5 K at the daily and monthly scales, respectively. 
Furthermore, a contribution analysis indicates that the ATC model reduces the MAE from around 4.2 K to 2.0 K 
while the DTC model reduces the MAE from around 2.0 K to 1.0 K. Based on our validation results and tests 
performed with MODIS data, the presented simple yet robust ADTC-based framework is able to accurately es
timate large-scale spatiotemporally continuous Tdm from thermal observations of tandem polar orbiters. 
Therefore, the ADTC-based framework is a potentially valuable tool for many related applications.   

1. Introduction 

Land surface temperature (LST) is a key variable that modulates 
land-atmosphere interactions (Li et al., 2013). Large-scale LST maps 
obtained by satellite thermal remote sensing have been widely used in 
various application scenarios (Anderson et al., 2008; Firozjaei et al., 

2020; Jin and Dickinson, 2010; Sims et al., 2008; Weng, 2009). Accurate 
‘true’ daily mean LST (hereafter termed as Tdm), which can be calculated 
conceptually by averaging temporally continuous LSTs, is valuable in a 
number of applications such as frozen soil change modelling (Chen et al., 
2017a; Zheng et al., 2020) and growing degree days mapping (Hassan 
et al., 2007). In addition, Tdm can be useful in surface air temperature 
estimation, surface property detection, evapotranspiration mapping, 
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and global climatology analysis (Rao et al., 2019; Zhan et al., 2014; 
Zhang et al., 2021; Zhou and Wang, 2016). However, temporally 
continuous LSTs at both annual and diurnal scales required for esti
mating Tdm are not readily available, partly due to clouds, which causes 
frequently missing data (Duan et al., 2017; Li et al., 2018), and partly 
due to the sparse sampling of instantaneous satellite observation, which 
can be exacerbated by the tradeoff between the spatial and temporal 
resolutions (Sismanidis et al., 2017; Zhan et al., 2014). 

Facing these challenges, studies often use temporally aggregated 
cloud-free LSTs (e.g., monthly aggregation) as a compromise (Chen 
et al., 2017b; Sobrino and Julien, 2013; Zheng et al., 2020; Zhou and 
Wang, 2016). However, temporally aggregated LSTs lack the daily 
variation information (Hassan et al., 2007). More importantly, the direct 
aggregation of cloud-free LSTs possesses two shortcomings: (1) under- 
cloud LSTs are simply ignored (Ermida et al., 2019; Langer et al., 
2010; Westermann et al., 2012) and (2) only instantaneous LSTs at a few 
overpass times per daily cycle are used (Ouyang et al., 2012; Williamson 
et al., 2014). These shortcomings lead to an insufficient sampling of 
under-cloud LSTs and the continuous diurnal dynamics. Therefore, the 
direct aggregation of cloud-free LSTs can produce a significant sampling 
bias (ΔTsb) compared to the ‘true’ Tdm (Chen et al., 2017b; Hu and 
Brunsell, 2013; Hu et al., 2020; Ouyang et al., 2012; Wang and Zhou, 
2015), which can lead to deviations in trend analyses (Zhou and Wang, 
2016). 

Significant progress has been made towards the provision of Tdm (or 
the ΔTsb estimation). Tdm estimation has been improved by incorpo
rating temporally continuous LSTs established with diurnal temperature 
cycle (DTC) models (Ouyang et al., 2012; Hu et al., 2020). ΔTsb has been 
estimated from under-cloud LSTs retrieved from passive microwave 
(PMW) observations or in-situ measurements (Ermida et al., 2019; 
Westermann et al., 2012); it also has been estimated via an empirical 
relationship with directly aggregated LSTs or surface air temperatures at 
the site scale (Hassan et al., 2007; Williamson et al., 2014; Zhou and 
Wang, 2016). However, these studies focused on either reconstructing 
temporally continuous cloud-free LSTs (Ouyang et al., 2012) or under- 

cloud LSTs (Ermida et al., 2019; Westermann et al., 2012). In other 
words, approaches addressing these two issues simultaneously remain 
lacking, which hinders significantly the accurate estimation of Tdm (or 
the accurate correction of ΔTsb). 

According to the aforementioned analysis, a simple yet robust 
framework for estimating Tdm remains lacking. A framework for Tdm 
estimation should contain both of the two intermediate but indispens
able processes, i.e., the reconstruction of under-cloud LSTs and the 
reconstruction of temporally continuous LSTs. In the following, we re
view the major methods used to implement these two processes. 

Methods for reconstructing under-cloud LSTs can be divided into 
four categories: (1) statistical methods that are based on the relation
ships between cloud-free LSTs and associated predictors such as the 
elevation and vegetation index (Coops et al., 2007; Zhang et al., 2020b; 
Zhao et al., 2019); (2) surface energy balance (SEB) methods that are 
based on the physical relationship between shortwave radiation and LST 
(Jin, 2000; Martins et al., 2019; Zeng et al., 2018; Zhang et al., 2015; 
Zhang et al., 2017; Zhao and Duan, 2020); (3) PMW methods exploiting 
the small effects of clouds on microwave data (Duan et al., 2017; Holmes 
et al., 2015; Sun et al., 2019; Xu and Cheng, 2021; Zhang et al., 2019; 
Zhang et al., 2020a); and (4) annual temperature cycle (ATC) methods 
that combine multiple sinusoidal functions and short-term LST fluctua
tions estimated from meteorological observations or reanalysis data (Fu 
and Weng, 2016; Liu et al., 2019; Zou et al., 2018). Typical methods for 
reconstructing temporally continuous LSTs include downscaling, 
spatiotemporal fusion, and diurnal temperature cycle (DTC) modelling 
methods (Fu and Weng, 2016; Hong et al., 2018). Downscaling methods 
enhance high-frequency (e.g., geostationary) LST products to obtain 
continuous LSTs at fine spatial resolutions (Sismanidis et al., 2017; 
Zakšek and Oštir, 2012; Zhan et al., 2013; Zhan et al., 2016). Spatio
temporal fusion methods integrate LSTs from multiple sources, e.g., 
from geostationary satellites and polar orbiters, to fulfill this task (Long 
et al., 2020; Quan et al., 2018; Weng et al., 2014; Wu et al., 2015; Xia 
et al., 2019). DTC models fit instantaneous LSTs with physical diurnal 
models to obtain continuous diurnal LST dynamics (Hong et al., 2018). 

Nomenclature 

Acronyms 
ATC annual temperature cycle 
ATCO original annual temperature cycle 
ATCE enhanced annual temperature cycle 
DTC diurnal temperature cycle 
DTR daily temperature range 
DOY day of year 
FOV field-of-view 
FY-2F VISSR Visible Infrared Spin Scan Radiometer onboard 

FengYun-2F 
LST land surface temperature 
MAE mean absolute error 
MB mean bias 
MERRA-2 Modern-Era Retrospective analysis for Research and 

Applications version 2 
MODIS Moderate Resolution Imaging Spectroradiometer 
MSG-SEVIRI the Spinning Enhanced Visible and Infrared Imager 

onboard Meteosat Second Generation 
PMW passive microwave 
SEB surface energy balance 
SURFRAD Surface Radiation Budget Network 

Symbol representation 
Tdm daily mean LST 
Tdm_ATC_DTC daily mean LST calculated by frequently sampling 

diurnal LST dynamics modelled by DTC model with cloud- 
free LST observations and under-cloud LSTs reconstructed 
by ATC model 

Tdm_ATC_four daily mean LST calculated by averaging cloud-free LST 
observations and under-cloud LSTs reconstructed by ATC 
model 

Tdm_cloud_free daily mean LST calculated by averaging cloud-free LST 
observations 

Tdm_obs_DTC daily mean LST calculated by frequently sampling 
diurnal LST dynamics modelled by DTC model with cloud- 
free and under-cloud LST observations 

Tdm_obs_four daily mean LST calculated by averaging cloud-free and 
under-cloud LST observations 

Tdm_true true daily mean LST for validation 
Tin_ATC instantaneous under-cloud LSTs reconstructed by ATC 

model 
Tin_ATC_DTC diurnal LST dynamics modelled by DTC model with 

cloud-free LST observations and under-cloud LSTs 
reconstructed by ATC model 

Tin_cloud_free instantaneous cloud-free LST observations 
Tin_obs hourly LST observations 
Tin_obs_DTC diurnal LST dynamics modelled by DTC model with 

cloud-free and under-cloud LST observations 
Tin_under_cloud instantaneous under-cloud LST observations 
ΔTsb sampling bias  
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The combination of any of the two methods listed above to recon
struct under-cloud and temporally continuous LSTs respectively offers 
the possibility to formulate a framework for Tdm estimation. However, 
the design of a simple yet robust framework that is easily implemented, 
driven by consistent data, and can potentially be applied globally re
mains a great challenge. For the reconstruction of under-cloud LSTs, the 
statistical and SEB methods are only suitable at the local scale, because 
their accuracies tend to decrease with the increasing size of a study area 
(Liu et al., 2019), while the PMW methods face disadvantages due to 
coarse spatial resolution, LST estimation influenced by a variable 
penetration depth, and observation gaps between orbits (Duan et al., 
2017; Xu and Cheng, 2021; Zhang et al., 2020a). For reconstructing 
temporally continuous LST dynamics, downscaling and spatiotemporal 
fusion methods require geostationary LSTs as inputs: this limits their 
global use due to observation geometry and sensor differences between 
geostationary satellites (Xu et al., 2014). Extra difficulties can be posed 
by the relatively complex structure of these two methods (Quan et al., 
2018) as well as the need to incorporate auxiliary data, which restricts a 
simple implementation (Wu et al., 2015; Zhan et al., 2013). 

In contrast, the ATC and DTC models, which are able to reconstruct 
under-cloud and temporally continuous LSTs, respectively, can be 
combined to form a simple and robust framework for global Tdm esti
mation. These two models are also compactly structured, easily imple
mented, independent of auxiliary data (only data acquired from polar 
orbiters and reanalysis data are required), and globally applicable. 
Therefore, here we propose a framework that combines the ATC and 
DTC models (hereafter termed ‘ADTC-based framework’) to efficiently 
estimate Tdm. We then comprehensively evaluate the ADTC-based 
framework under cloud-free conditions with geostationary satellite 
data and under overcast conditions with in-situ measurements. The 
presented ADTC-based framework is an effective tool for estimating Tdm 
and, therefore, will be highly useful for a broad range of applications. 

The paper is organized as follows: Section 2 introduces the selected 
datasets; Section 3 describes the ADTC-based framework (Section 3.1) 
and the associated validation strategy (Section 3.2). Section 4 presents 
the validation results (Sections 4.1 & 4.2), the individual contributions 
(Sections 4.3) and uncertainty analysis (Section 4.4) for each part of the 
ADTC-based framework, as well as discussions on the limitations and 
prospects of the ADTC-based framework (Section 4.5). The conclusions 

are provided in Section 5. 

2. Datasets 

2.1. In-situ data 

In-situ measurements from seven SURFRAD (Surface Radiation 
Budget Network) sites during 2010–2017 (see Fig. 1a) were used to 
validate the ADTC-based framework. Due to their rigorous quality 
control and continuity, SURFRAD measurements have long been used 
for the validation of satellite LST products (Duan et al., 2019; Guillevic 
et al., 2014; Guillevic et al., 2018; Martin et al., 2019; Wang and Liang, 
2009). The seven SURFRAD sites are located in relatively heterogeneous 
areas where land cover types include grass, cropland, and bare soil. 
Broadband hemispherical radiances are measured with pyrgeometers 
(Eppley Precision Infrared Radiometer) with a wavelength range of 
4–50 μm. Sensors at each site are mounted at a height of 10 m and have 
an effective field-of-view (FOV) radius of 30 to 45 m, resulting in an 
observed surface area of about 70 × 70 m2. More detailed information 
on these seven sites is given in Table S1 in supplementary material. In- 
situ LSTs are estimated from the upward and downward longwave ra
diances measured at 1-min interval with the following formula (Duan 
et al., 2017; Ermida et al., 2020; Zhang et al., 2019): 

T =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

L↑ − (1 − εb)L↓

εbσ
4

√

εb = 0.261 + 0.314ε31 + 0.411ε32

(1)  

where L↑ and L↓ are the upward and downward longwave radiation, 
respectively; σ is the Stefan-Boltzmann constant (5.67 × 10− 8 

W⋅m− 2⋅K− 4); εb is the broadband emissivity estimated from MODIS 
(Moderate Resolution Imaging Spectroradiometer) narrowband emis
sivities ε31 and ε32 in MODIS Channels 31 and 32, respectively (Liang 
et al., 2013). In order to reduce the impacts from outliers and short-term 
LST fluctuations, we first used the “3σ-Hampel identifier” to removes 
outliers, and then aggregated the 1-min LST observations to hourly 
values for validation (Duan et al., 2019). 

Fig. 1. Sites and areas used for validation. The locations of the seven SURFRAD sites are provided in (a). The spatial coverage of MSG-SEVIRI (Spinning Enhanced 
Visible and Infrared Imager onboard Meteosat Second Generation) and FY-2F VISSR (Visible Infrared Spin Scan Radiometer onboard FengYun-2F) are shown in (b) 
and (c), respectively. The continuous colour bar relates to the temporally aggregated LST of MSG/SEVIRI and FY-2F VISSR within the study period. The numbers ‘0’ 
to ‘16’ under the discrete colour bar refer to the land cover types of the International Geosphere-Biosphere Programme (IGBP, Friedl et al., 2002). 
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2.2. Satellite LST data 

Two satellite LST datasets were employed, including MODIS and 
geostationary satellite data (see Table 1). The two satellite datasets were 
used for different purposes: MODIS data from 2010 to 2017 served as 
auxiliary data to provide LST-related information for each SURFRAD 
site. MODIS LST from July 15, 2018 were only input into the ADTC- 
based framework for illustrating the process of estimating Tdm (see 
Fig. S1). The geostationary satellite LSTs were used for validation under 
cloud free conditions, since they are able to provide temporally dense 
thermal observations of the surface that can be used to obtain realistic 
estimates of Tdm. 

The MODIS data include the LST-related information from the 
MOD11A1 and MYD11A1 products in Collection 6. The accuracy of 
MODIS LST has been widely validated (Wan, 2014): here they were used 
to (1) provide the emissivity required for calculating SURFRAD LST, (2) 
provide cloud information for SURFRAD sites at MODIS overpass times, 
and (3) illustrate the estimation of Tdm with the ADTC-based framework 
(details are provided in Fig. S1). 

The geostationary satellite data used in this study include LST 
products from MSG-SEVIRI (28 days in 2016) and FY-2F VISSR (2016) 
data (see Table 1). The spatial (temporal) resolutions of the MSG-SEVIRI 
and FY-2F LST data are 3 km (15 min) and 5 km (1 h), respectively. 
Comprehensive validations against in-situ measurements have shown 
that the RMSE of the operational MSG-SEVIRI LST product is generally 
between 1.0 K and 2.0 K (Göttsche et al., 2016; Martin et al., 2019). 
While comprehensive validations against in-situ measurements are 
lacking for the FY-2F LST product, several assessments performed over a 
small number of sites indicate a RMSE of around 2.0 K, and FY-2F LSTs 
are in good agreement with the widely-validated MODIS LST products 
(Hu et al., 2018; Song et al., 2017). 

2.3. Reanalysis data 

The surface air temperatures (SATs) from MERRA-2 (the Modern-Era 
Retrospective analysis for Research and Applications version 2) rean
alysis data (the specific collection name is inst1_2d_lfo_Nx) were used as 
auxiliary data to drive the ATC model (Gelaro et al., 2017). The spatial 
and temporal resolutions of these SAT data are 0.5◦ × 0.625◦ and 1 h, 
respectively. 

3. Methodology 

3.1. The ADTC-based framework 

3.1.1. Overview of the ADTC-based framework 
In order to estimate accurate Tdm from thermal observations of 

tandem polar orbiters, the ADTC-based framework is implemented with 

different strategies for overcast and cloud-free conditions. Overcast 
conditions are days when the diurnal LST dynamics is disturbed by 
clouds (including partly disturbed or blocked throughout a day), which 
is frequently the case and hinders thermal observations from satellites. 
In contrast, cloud-free conditions refer to days when LST observations at 
any overpass time within the LST diurnal cycle are cloud-free. Here, 
cloud-free conditions include not only standard cloud-free conditions, i. 
e., where all LST observations for a single day are cloud free, but also 
‘synthetic’ cloud-free conditions, i.e., where valid LSTs at each overpass 
time are temporally aggregated, e.g., over a month or season, to elimi
nate the impact from cloud contamination (Hu et al., 2020). The latter is 
a common and well-established practice in the remote sensing com
munity (Hong et al., 2018; Huang et al., 2016; Jin, 2000). 

Under overcast conditions, the ADTC-based framework includes two 
major steps: the reconstruction of instantaneous under-cloud LSTs with 
the ATC model and the estimation of Tdm using the DTC model. Under 
cloud-free conditions, an adequate number of valid LSTs per day are 
available for DTC modelling and ATC modelling becomes unnecessary. 
Using MODIS (a typical thermal sensor onboard tandem polar orbiters) 
LSTs as an example, Fig. 2 illustrates how the ADTC-based framework 
estimates Tdm by performing the following four steps: 

Step 1: Modelling intra-annual LST dynamics with the ATC model. 
For each overpass time, all valid MODIS LST observations and the 
auxiliary data (daily SATs from MERRA-2) (Fig. 2a) are used to drive the 
enhanced ATC model (see Section 3.1.1) to obtain the daily LST dy
namics within an annual cycle. 

Step 2: Reconstructing under-cloud LSTs with the ATC modelling 
results. The intra-annual LST dynamics reconstructed by the ATC model 
can be divided into cloud-free and under-cloud parts according to the 
validity of the original thermal observations (Fig. 2b). The modelled 
under-cloud LST are used to fill the gaps caused by cloud contamination. 
To drive the DTC model, the original MODIS cloud-free LSTs and the 
ATC modelling results are used together. 

Step 3: Modelling diurnal LST dynamics with the DTC model. After 
Steps 1 &2, the LSTs at the four overpass times are spatiotemporally 
continuous (see Fig. 2c). The four-parameter DTC model (see Section 
3.1.2) is then employed to model diurnal LST dynamics (Fig. 2d). 

Step 4: Estimating Tdm. Based on the diurnally continuous LSTs ob
tained in Step 3, Tdm can be estimated by averaging the frequently 
sampled LSTs (e.g., hourly or subhourly) or by integrating the DTC 
model function (Fig. 2e). 

Under cloud-free conditions, only Steps 3 & 4 are required to esti
mate Tdm (i.e., Steps 1 & 2 related to the ATC model are unnecessary). 
Under overcast conditions, the ATC and DTC models are used sequen
tially to estimate Tdm, i.e., Steps 1 to 4 are all required. Hereafter Tdm 
estimated by the ADTC-based framework is termed Tdm_ATC_DTC under 
cloud-free as well as overcast conditions. 

Note that when estimating Tdm directly from actual MODIS LST ob
servations, the Tdm estimation mainly depends on the availability of 
valid LSTs. For the condition under which all four daily MODIS LST 
observations are valid, only Steps 3 & 4 are required to estimate Tdm. 
However, this scenario may still not represent the true cloud-free con
dition since others times than the four MODIS transit times may still be 
cloudy. The uncertainties of ATC and DTC models as well as the accu
racies of the ADTC-based framework under cloud-free and overcast 
conditions were discussed in the later section (Section 3.2 and Section 
4). 

3.1.2. Enhanced ATC model 
This study employs the enhanced ATC model (termed the ATCE 

model) proposed by Zou et al., 2018) to estimate the daily LST dynamics 
within an annual cycle. Compared to the original ATC model (termed 
ATCO model), which describes the intra-annual LST dynamics with a 
single sinusoidal function (Bechtel, 2015), the ATCE model additionally 
incorporates daily SATs to capture day-to-day LST fluctuations. This 
enhances the modelling accuracy and simultaneously balances the 

Table 1 
Details of the satellite data used in this study.  

Sensor Spatial extent Temporal 
range 

Product 
type 

Product namec 

MODIS Pixels at each 
site 

2010–2017 Emissivity MYD11A1 

h28v05 tile July 15, 
2018a 

LST MOD11A1, 
MYD11A1 

FY-2F Full disk 2016 LST 1-h mean Full Disk 
LST 

MSG- 
SEVIRI 

Full disk 28 daysb LST LSA-001  

a The MODIS data from a single day (i.e., July 15, 2018) were only used as an 
example for illustrating the process of estimating Tdm (details in Fig. S1). 

b The selected days for MSG-SEVIRI data in 2016 are Jan. 1 to 7, Apr. 1 to 7, 
Jul. 1 to 7, and Oct. 1 to 7. 

c The data sources of these products are provided in Acknowledgements. 
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Fig. 2. Illustration of the ADTC-based framework for estimating accurate Tdm from MODIS data. The original MODIS observations (including auxiliary data), ATC- 
reconstructed results, and output Tdm are shown in subfigures (a), (c), and (e), respectively. Subfigures (b) and (d) illustrate the reconstruction procedures with the 
ATC and DTC models, respectively. tsr denotes the sunrise time. An example of Tdm estimated with this framework is provided in Fig. S1. 
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model complexity (Liu et al., 2019). The ATCE model is given by the 
following equation. 
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

TATCE(d) = T0 + Asin
(

2πd
N

+ θ
)

+ k⋅ΔTair(d)

TATCO(d) = T0 air + Aairsin
(

2πd
N

+ θair

)

ΔTair(d) = Tair(d) − TATCO(d)

(2)  

where TATCE(d) denotes the ATCE-modelled annual LST dynamics 
depending on the day of year (DOY, d); T0, A, and θ are the mean, 
amplitude and phase shift of the LST dynamics within an annual cycle, 
respectively; k is a multiplier used for modulating the difference be
tween LST and SAT; ΔTair(d) is the difference between the daily SATs (i. 
e., Tair(d), obtained from reanalysis data or in-situ measurements for this 
study) and the modelled air temperatures TATCO(d); T0_air, Aair, and θair 
are the mean, amplitude and phase shift of the daily air temperature 
dynamics within an annual cycle, respectively; and N is the number of 
days in a year. The four parameters of the ATCE model (i.e., T0, A, θ, and 
k) can be solved by the MODIS LSTs and reanalysis SATs using the least- 
square method (Zou et al., 2018). Please note that there are systematic 
differences between MODIS LST and air temperature from reanalysis 
data or in-situ measurements. However, such biases are reduced to a 
large extent because only the day-to-day air temperature fluctuations 
are incorporated into the ATC model (i.e., Tair(d)) and the parameter k 
helps to modulate the difference between LST and air temperature (Liu 
et al., 2019). 

3.1.3. Four-parameter DTC model 
Since tandem polar orbiters provide at most four thermal observa

tions per daily cycle, the modelling of diurnal LST dynamics requires a 
four-parameter DTC model. Here we use a well-performing four- 
parameter DTC model (termed GOT09-dT-τ model) derived from an 
advanced DTC model (Göttsche and Olesen, 2009) with appropriate 
parameter reduction strategies (Hong et al., 2018). The GOT09-dT-τ 
model is formulated as follows: 
⎧
⎪⎨

⎪⎩

Tday(t) = T0 + Tacos(θz)cos− 1( θz,min
)
⋅e[mmin − m(θz) ]×0.01, t < ts

Tnig(t) = T0 + Tacos(θzs)cos− 1( θz,min
)
⋅e[mmin − m(θzs) ]×0.01e− 12

πk (θ− θs), t ≥ ts

(3)  

where Tday(t) and Tnig(t) are the LST dynamics for the day and at night, 
respectively; T0 and Ta are the residual temperature and the diurnal 
amplitude, respectively; θ is the thermal hour angle; θz is the thermal 
zenith angle corresponding to θ; m(θz) is the relative optical air mass; θ is 
denoted by θs when t equals to ts (i.e., the time when free attenuation 
begins); when t equals tm (time when LST reaches its daily maximum), θz 
is denoted by θz,min and m(θz) by mmin; when t equals ts, θz is denoted by 
θzs and m(θz) by m(θzs); k is the attention rate of nighttime temperature 
decrease. Formulas for calculating θ, θz, m(θz), and k can be found in 
Göttsche and Olesen (2009). For the GOT09-dT-τ model, there are only 
four parameters (i.e., T0, Ta, tm, and ts), which can be determined by 
fitting Eq. (3) to four daily thermal observations with the least-square 
method (Hong et al., 2018). Accurate Tdm can then be estimated by 
averaging the diurnally continuous LST dynamics provided by the 
GOT09-dT-τ model. 

3.2. Validation strategy 

Satellite LST products are usually validated by comparing them 
directly with in-situ measurements (Göttsche et al., 2016; Guillevic 
et al., 2018; Li et al., 2014; Wang and Liang, 2009; Yang et al., 2020). 
However, the differences (or errors) between satellite and in-situ LSTs 
not only include the errors from their respective retrieval methods, but 
also contain the errors resulting from the mismatch in scale and field-of- 

view (Ermida et al., 2014; Ermida et al., 2020; Guillevic et al., 2014; Li 
et al., 2020; Yu et al., 2019). Here, the differences (or errors) between 
satellite and in-situ LSTs also include errors of the ADTC-based frame
work, which all affects the Tdm estimation. 

In other words, it would be difficult to differentiate between errors 
from the ADTC-based framework, LST retrieval and scale mismatch. It is 
even more challenging to separate the individual contributions and 
uncertainties from the ATC and DTC models embedded in the frame
work. To avoid this difficulty, this study evaluated the framework using 
LST datasets from a single source, i.e., modelling errors are investigated 
independently with either satellite data or in-situ measurements. 

3.2.1. Validation strategy for cloud-free conditions 
Under cloud-free conditions (i.e., the entire diurnal LST cycle is 

cloud-free), the ADTC-based framework is validated with thermal ob
servations from geostationary satellites/sensors, including FY-2F and 
MSG-SEVIRI. These two geostationary satellites can provide hourly (FY- 
2F) or sub-hourly (15-min; MSG-SEVIRI) cloud-free LSTs, which – under 
standard cloud-free condition – cover an entire diurnal cycle well (Duan 
et al., 2012; Hong et al., 2018). Under cloud-free conditions, the daily 
averages of all hourly or sub-hourly cloud-free geostationary LSTs are, 
therefore, good approximations of ‘true’ daily mean LST. 

To validate the ADTC-based framework under standard cloud-free 
conditions, days on which all geostationary hourly or sub-hourly LSTs 
are cloud-free are selected. i.e., the standard cloud-free days. The ‘true’ 
value of Tdm (termed Tdm_true) on a single day was calculated as the 
average of all hourly or sub-hourly cloud-free LSTs. The mean of the four 
LSTs at 01:30, 10:30, 13:30, and 22:30 (local solar time) represents the 
Tdm calculated with the traditional method (termed Tdm_cloud_free). For 
the same data, Tdm was also estimated with the ADTC-based framework 
for standard cloud-free conditions (termed Tdm_ATC_DTC). The difference 
between Tdm_cloud_free and Tdm_true (i.e., Tdm_cloud_free − Tdm_true) then 
represents the sampling bias (ΔTsb) of the traditional method for 
calculating Tdm. The difference between Tdm_ATC_DTC and Tdm_true, which 
is described using mean absolute error (MAE) and bias, reflects the ac
curacy of the ADTC-based framework. The improvement of Tdm_cloud_free 
− Tdm_true relative to Tdm_ATC_DTC − Tdm_true reflects the capability of the 
framework to reduce ΔTsb. 

The above-mentioned strategy is suitable for determining the accu
racy of the ADTC-based framework under standard cloud-free condition. 
For validating the framework under synthetic cloud-free condition, we 
first obtained temporal LST composites by aggregating hourly or sub- 
hourly geostationary LST data pixel-wise at each overpass time over a 
specific month (or season). Apart from performing the validations per 
month (or season) rather than per day, the validation procedures are 
then identical for standard and synthetic cloud-free conditions. 
Considering that the pattern of diurnal LST dynamics after monthly or 
seasonal aggregation is very similar to that under standard cloud-free 
condition (Hong et al., 2018; Hu et al., 2020), the modelling accu
racies under synthetic and standard cloud-free conditions are expected 
to be similar. 

3.2.2. Validation strategy for overcast conditions 
Under overcast conditions (i.e., the diurnal LST cycle is partly 

disturbed or diurnal LST observations are blocked by clouds throughout 
a day), only in-situ LSTs derived from SURFRAD measurements were 
used for validation, since in-situ measurements provide all-sky obser
vations, including valid under-cloud LST measurements. Because 
SURFRAD in-situ measurements are temporally continuous, they can be 
used for estimating ‘true’ Tdm (i.e., Tdm_true) for validation. As already 
mentioned above, errors from LST retrieval and spatial scale mismatch 
can be excluded and, consequently, errors from the ADTC-based 
framework are isolated, if validations are performed with data from a 
single source (i.e., SURFRAD measurements). 

Under overcast conditions, Tdm_true can be straightforwardly esti
mated as the daily average of the temporally continuous in-situ LST 
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measurements (including both cloud-free and overcast conditions). Tdm 
estimated with the traditional method, i.e., Tdm_cloud_free, was obtained as 
the average of the in-situ cloud-free LST measurements coinciding with 
cloud-free MODIS overpasses (up to four possible observations per day). 
Tdm estimated with the ADTC-based framework, i.e., Tdm_ATC_DTC, was 
obtained from the cloud-free in-situ LSTs and some auxiliary data, e.g., 
in-situ SATs. Similar to the validation under cloud-free conditions, 
comparisons among SURFRAD-based Tdm_true, Tdm_cloud_free, and 
Tdm_ATC_DTC provide information on the accuracy and ability of the 
ADTC-based framework to reduce ΔTsb and estimate Tdm under overcast 
conditions. 

3.2.3. Contributions from the ATC and DTC models to Tdm estimates 
Under cloud-free conditions, applying the ATC model is unnecessary 

and the ADTC-based framework only uses the DTC model: as a result, 
contributions in estimating Tdm (or reducing ΔTsb) only originate from 
the DTC model. In contrast, under overcast conditions, the ATC and DTC 
models both contribute significantly to the estimation of Tdm. To sepa
rate the contributions of the two models, we took the accuracy of 
Tdm_cloud_free as the baseline (line ΔTA in Fig. 3b). Here Tdm_cloud_free 
represents the mean of all instantaneous cloud-free LST observations 
(mean of Tin_cloud_free, green circles in Fig. 3a). The accuracy improve
ments of the ATC and DTC models were then analyzed step by step. 

The incorporation of the ATC model allows to fill LST gaps due to 
clouds (i.e., the instantaneous under-cloud LSTs Tin_ATC shown as blue 
triangles in Fig. 3a). The use of ATC-modelled Tin_ATC partly reduces 
ΔTsb and ensures that four valid daily LSTs are available for the DTC 
model. In Fig. 3b, the accuracy improvement due to the ATC model (i.e., 

its contribution) is shown as the difference between Tdm_cloud_free and 
Tdm_ATC_four (mean of Tin_cloud_free and Tin_ATC) with respect to the base
line, i.e., the difference between lines ΔTA and ΔTB. Furthermore, by 
substituting the reconstructed Tin_ATC with actually observed instanta
neous under-cloud LSTs (Tin_under_cloud, red rectangles in Fig. 3a), the 
maximum contribution of under-cloud LST reconstruction can be re
flected by the accuracy improvement from Tdm_cloud_free to Tdm_obs_four 
(mean of Tin_cloud_free and Tin_under_cloud), i.e., the difference between lines 
ΔTA and ΔTC in Fig. 3b. The maximum contribution is reflected because 
the true instantaneous under-cloud LSTs (Tin_under_cloud) are obtained 
from measurements and are, therefore, the ideal results achieved by a 
model (including the ATC model). In other words, the difference be
tween Tdm_ATC_four and Tdm_obs_four (i.e., between lines ΔTB and ΔTC in 
Fig. 3b) reflects the uncertainty added to the estimation of Tdm when 
reconstructing under-cloud LSTs with the ATC model. 

With the four daily LSTs consisting of the original instantaneous 
cloud-free observations (Tin_cloud_free) and the instantaneous under-cloud 
LSTs reconstructed by the ATC model (Tin_ATC), the fitting of the DTC 
model becomes feasible. The DTC model provides continuous diurnal 
LST dynamics (Tin_ATC_DTC, blue line in Fig. 3a) for estimating Tdm. 
Therefore, the specific contribution of the DTC model to the accuracy 
improvement can be quantified as the difference between Tdm_ATC_four 
and Tdm_ATC_DTC (mean of Tin_ATC_DTC), i.e., between lines ΔTB and ΔTD in 
Fig. 3b. Similarly, the contribution of the DTC model is partly reflected 
in the difference between lines ΔTC and ΔTE in Fig. 3b, i.e., the accuracy 
improvement from Tdm_obs_four to Tdm_obs_DTC, with the latter being the 
daily mean of the frequently-sampled Tin_obs_DTC (red line in Fig. 3a) 
obtained by fitting the DTC model to the in-situ LST observations. 
Furthermore, the difference between Tdm_ATC_DTC and Tdm_obs_DTC (i.e., 
between lines ΔTD and ΔTE in Fig. 3b) reflects the robustness of the DTC 
model to ATC modelling error. 

Table 2 summarizes the aforementioned six Tdm (termed the six 
LSTs) for comprehensively evaluating the separate contributions of the 
ATC and DTC model, with Tdm_true used as the reference. The ΔTsb of the 
traditional method for estimating Tdm is reflected by the error of 
Tdm_cloud_free (line ΔTA in Fig. 3b). The improvement contributed by the 

Fig. 3. The instantaneous and daily mean LSTs involved in the comparison and 
validation of the ADTC-based framework under overcast condition. The 
instantaneous LSTs based on which daily mean LSTs are estimated are illus
trated in (a). Noting that the value along the x-axis >24 denotes time of the next 
day. Points shown by the green circles, red rectangles, and blue triangles 
represent cloud-free observations, under-cloud observations, and temperatures 
reconstructed by the ATC model, respectively. The black, red, and blue lines 
indicate in-situ LSTs, temperatures reconstructed by the DTC model based on 
the cloud-free and under-cloud observations, and temperatures reconstructed 
by the DTC model based on the cloud-free observations and ATC-modelled 
results, respectively. The six estimates of daily mean LSTs (details provided 
in Table 2) used for validating and quantifying the separate contributions from 
the ATC and DTC models are displayed in (b) where their respective differences 
are labeled as ΔTA to ΔTE. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Table 2 
The six different estimates of daily mean LST Tdm used in the comparisons.  

Daily mean 
LST 
estimates 

Definition presentation in  
Fig. 3 

Explanation/ 
Comment 

Tdm_true mean of hourly 
LSTs 

mean of Tin_obs 

(black line) 
‘true’ value of daily 
mean LST for 
validation 

Tdm_cloud_free mean of cloud-free 
LSTs 

mean of 
Tin_cloud_free (green 
points) 

traditional method for 
estimating Tdm 

Tdm_ATC_four cloud-free LSTs +
ATC model +
mean of four 
overpassing LSTsa 

mean of 
Tin_cloud_free and 
Tin_ATC (green and 
blue points) 

used to quantify the 
contribution of the 
ATC model 

Tdm_obs_four cloud-free LSTs +
under-cloud LSTs 
+ mean of the four 
overpassing LSTs 

mean of 
Tin_cloud_free and 
Tin_under_cloud 

(green and red 
points) 

used to quantify the 
maximum 
contribution of under- 
cloud LST 
reconstruction as well 
as the uncertainty of 
the ATC model 

Tdm_ATC_DTC cloud-free LSTs +
ATC model + DTC 
model 

mean of 
Tin_ATC_DTC (blue 
line) 

Tdm estimated by the 
ADTC-based 
framework, also used 
to reflect the 
contribution of the 
DTC model 

Tdm_obs_DTC cloud-free LSTs +
under-cloud LSTs 
+ DTC model 

mean of 
Tin_obs_DTC (red 
line) 

used to reflect the 
robustness of the DTC 
model  

a “+” means the combination of data and models to estimate Tdm. 
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ATC model and its modelling uncertainty are expressed by the differ
ences of Tdm_ATC_four and Tdm_obs_four with respect to Tdm_true (lines ΔTB 
and ΔTC). Similarly, the improvement contributed by the DTC model 
and its modelling robustness are expressed by the differences of 
Tdm_ATC_DTC and Tdm_obs_DTC with respect to Tdm_true (lines ΔTD and ΔTE). 

3.2.4. Uncertainties of the ATC and DTC models 
Under cloud-free condition, only the DTC model is required to esti

mate Tdm; and the uncertainties of the DTC model can therefore be 
denoted directly by the accuracies of the ADTC-based framework. Under 
overcast condition, the accuracies of the Tdm estimated by the ADTC- 
based framework are closely related to the uncertainties of both the 
ATC and DTC models, i.e., the errors in reconstruction of instantaneous 
under-cloud LSTs with the ATC model as well as the errors the recon
struction of diurnally continuous LST dynamics with the DTC model. It is 
not easy to separate the individual uncertainties from these two models 
because the DTC and ATC models are intertwined in the ADTC-based 
framework. Similar to the separation of the individual contributions of 
the ATC and DTC models, here we quantify their uncertainties step by 
step only with in-situ measurements. 

Using the under-cloud in-situ LST observations (Tin_under_cloud in 
Fig. 3), the uncertainties of the ATC model (Tin_ATC in Fig. 3) are directly 
quantifiable. Based on the ATC-reconstructed LSTs, the DTC modelling 
becomes feasible. The errors of the DTC-modelled LSTs (Tin_ATC_DTC in 
Fig. 3), which also reflect the uncertainties of the DTC modelling when 
facing the uncertainties from the ATC modelling and short-term LST 
fluctuations under various cloud-contaminated conditions, are conse
quently quantifiable with the hourly in-situ LST observations (Tin_obs in 
Fig. 3). The comparison of error between the Tin_ATC_DTC (instantaneous 
temperature) and Tdm_ATC_DTC (daily mean temperature) indicates the 
robustness of the DTC model in estimating Tdm. 

4. Results and discussion 

4.1. Validation under cloud-free conditions 

The validation results of the ADTC-based framework under cloud- 
free conditions with FY-2F and MSG-SEVIRI data are provided in 
Fig. 4. The numbers of standard cloud-free days (Fig. 4a and b) indicate 
that under-cloud LSTs need to be reconstructed over most regions except 
deserts, where standard cloud-free days are generally more frequent. 

For each standard cloud-free day, we calculate both the sampling 
bias (Tdm_cloud_free − Tdm_true) and the error of the generated Tdm 
(Tdm_ATC_DTC − Tdm_true) as well as their mean values. The results show 
that the sampling bias (ΔTsb) is always positive and in most regions 
exceeds 2.0 K (Fig. 4c and d). These results confirm that the average of 
the four LSTs from polar orbiters per daily cycle is unable to estimate 
Tdm accurately. Within a standard or synthetic cloud-free diurnal cycle, 
the LSTs sampled at 10:30 and 13:30 (local solar time) are close to the 
daily maximum, while LST sampled at 22:30 and 01:30 (local solar time) 
are typically slightly higher than the daily minimum, which usually 
occurs around sunrise (Crosson et al., 2012; Good, 2015). This indicates 
that the gradual nighttime cooling is probably under-sampled by the 
four daily LSTs for accurately estimating Tdm. For this reason, 
Tdm_cloud_free usually overestimates the more accurate Tdm estimate that 
is obtained from hourly (or minutely) observations, i.e., ΔTsb is positive 
for Tdm_cloud_free. 

Spatial variations of ΔTsb (see Fig. 4c and d) show that it is related to 
land cover type and climate zone. ΔTsb is generally higher in dry cli
mates under which the surface is dominated by bare soils (e.g., the 
Sahara Desert and Tibetan Plateau). From the perspective of temporal 
sampling, ΔTsb is expected to be positively correlated with daily tem
perature range (DTR): a low ΔTsb (i.e., Tdm_cloud_free is close to actual 
Tdm) is usually associated with a small DTR (i.e., a small diurnal varia
tion of LST) and vice versa. Under dry climates the relatively large DTR, 
therefore, often increases ΔTsb. 

The results show that the mean bias (MB) and MAE of Tdm_ATC_DTC are 
around − 0.1 K and 0.5 K, respectively (see Fig. 4e and f). Moreover, 
these errors are insensitive to location and land cover type, which in
dicates that under cloud-free conditions the ADTC-based framework is 
able to reduce ΔTsb and consequently produces high-quality estimates of 
Tdm. 

4.2. Validation under overcast conditions 

4.2.1. Sampling biases (ΔTsb) at daily and monthly scales 
For cloud-free conditions, the results in Section 4.1 show that Tdm 

estimated directly as the average of the available cloud-free satellite 
LSTs (i.e., Tdm_cloud_free) is systematically higher than the actual (‘true’) 
Tdm. Using SURFRAD data, we calculate the ΔTsb between Tdm_cloud_free 
and true daily/monthly mean LSTs (Tdm_true) under overcast conditions. 
Fig. 5 and Fig. 6 illustrate that the respective ΔTsb have different pat
terns at daily and monthly scales. 

At the daily scale, Tdm_cloud_free is calculated by averaging the limited 
number of available cloud-free observations in a single day (ranging 
from 0 to 4 for MODIS observations), while Tdm_true is calculated by 
averaging temporally continuous diurnal LST dynamics. Consequently, 
the ΔTsb depends on the frequency and time of the day when clouds 
occur. Fig. 5 shows that the pattern of ΔTsb at the daily scale differs 
greatly for the sixteen cases (Fig. 5b) that were defined based on the 
availability of the four daily LST observations. ΔTsb is usually positive 
when clouds block nighttime LST observations (Fig. 5a) and can exceed 
5.0 K if LST observations at night are unavailable. The opposite occurs 
for invalid daytime observations. If we only consider Case 1 (four valid 
LST observations), ΔTsb remains larger than 2.0 K. Furthermore, the low 
proportion of Case 1 (20%, see Fig. 5c) means that for most days, there 
are fewer than four cloud-free LST observations to drive the DTC model, 
which stresses the necessity of reconstructing under-cloud LST. 

At the monthly scale, Tdm_cloud_free is calculated by directly averaging 
all discrete and instantaneous cloud-free observations within the specific 
month. The frequency and time of the day of cloud cover have less 
impact on the value of ΔTsb than that at the daily scale. Fig. 6 displays 
that ΔTsb is always positive (usually larger than 2.0 K) and close to the 
MAE at the monthly scale. This is because monthly aggregation results in 
a similar pattern of diurnal LST dynamics as under cloud-free conditions. 
Therefore, ΔTsb at the monthly scale is very similar to that under cloud- 
free conditions at the daily scale (Section 4.1) or similar to Case 1 (with 
four valid daily LSTs) at the daily scale (Fig. 5a). 

The differences in ΔTsb between daily and monthly scales indicate 
that a validation of the framework under overcast conditions should 
consider the time scale of the temporal aggregation. Therefore, in the 
following we validate daily and monthly time-scales separately. 

4.2.2. Validation at the daily scale 
The validations at the daily scale in Fig. 7 show that the ADTC-based 

framework is able to reduce the ΔTsb (Tdm_cloud_free − Tdm_true) and fill the 
gaps caused by clouds. In the following, we describe the two main im
provements in detail. 

First, the validations indicate that the ADTC-based framework ach
ieves a stable and systematic improvement of ΔTsb at the daily scale 
(Fig. 7). The MAE and bias of Tdm_cloud_free exceed 2.0 K for most cases 
(see Fig. 5a). In contrast, the errors of Tdm_ATC_DTC are less than those of 
Tdm_cloud_free: MAE and bias of Tdm_ATC_DTC are reduced considerably to 
around 1.0 and − 0.4 K, respectively. Moreover, the error of Tdm_ATC_DTC 
is insensitive to the season, which is probably due to the robustness of 
the selected DTC model (GOT09-dT-τ) in estimating Tdm for all cases 
(see Section 4.4). 

Second, the ADTC-based framework is able to fill the gaps caused by 
clouds. The proportion of days with fewer than four valid observations 
(i.e., Cases 2 to 16) is about 80% within 30-day intervals except for the 
DRA site (gray shadows in Fig. 7). Furthermore, the proportion of days 
with four invalid observations (i.e. Case 16) is 27% (see Fig. 5c). Clouds 
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Fig. 4. Validation results under cloud-free conditions for geostationary satellite LSTs. The first and second columns show results for FY-2F and MSG-SEVIRI, 
respectively. (a) and (b) show the number of standard cloud-free days in the study period with the number denoting the average count of standard cloud-free 
days. (c) and (d) show the mean daily sampling bias (Tdm_cloud_free − Tdm_true). (e) and (f) show the error (Tdm_ATC_DTC − Tdm_true) of the ADTC-based framework. 
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cause frequent gaps in the results of Tdm_cloud_free (discrete red points in 
Fig. 7). In contrast, the results of Tdm_ATC_DTC are spatiotemporally 
continuous (continuous purple lines in Fig. 7). The flowchart of the 
ADTC-based framework (Fig. 2) and testing with MODIS data (Fig. S1) 

illustrates the process of generating spatiotemporally continuous Tdm: 
the ATC model reconstructs the under-cloud LSTs to ensure that there 
are four valid LSTs per day to drive the DTC model, which yields 
spatiotemporally continuous Tdm_ATC_DTC. 

4.2.3. Validation at the monthly scale 
The errors of Tdm_cloud_free and Tdm_ATC_DTC with Tdm_true as reference 

at the monthly scale are provided in Fig. 8. The validation results show 
that at the monthly scale the ADTC-based framework is able to reduce 
ΔTsb (i.e., Tdm_cloud_free − Tdm_true) and achieves a higher accuracy than at 
the daily scale. 

At the monthly scale, ΔTsb is around 2.4 K, while MAE for 
Tdm_ATC_DTC is around 0.5 K. The comparison between the sites further 
indicates that ΔTsb is related to land cover type, e.g., ΔTsb is larger over 
bare soil (the TBL and DRA sites), which tend to have larger DTRs. This 
finding is similar to that under cloud-free conditions and can be 
explained in the same way (see Fig. 4). In contrast, the error of TATC_DTC 
remains relatively stable and is insensitive to land cover type. Further
more, the MAEs of Tdm_cloud_free in Fig. 8 generally vary between 1.0 and 
5.0 K, which mainly reflects the random occurrence of cloud-free ob
servations (see Section 4.2.1). In contrast, the MAEs of Tdm_ATC_DTC are 
stable at around 0.5 K. This stability mainly results from the temporal 
continuity obtained with the ADTC-based framework (see Fig. 2), which 
reduces the uncertainty caused by missing data (e.g., due to clouds) 
before calculating the monthly mean LST. 

Comparisons between the daily and monthly scales (Fig. 7 vs. Fig. 8) 
indicate that the MAE of Tdm_ATC_DTC is generally higher at the daily scale 
(1.0 K) than at the monthly scale (0.5 K). This finding is expected 
because the temporal aggregation neutralizes partially positive and 
negative biases in Tdm within a month (Langer et al., 2010), which 
demonstrates a more accurate and significant ΔTsb reduction over a 
larger time scale. 

4.3. Individual improvements of Tdm estimates from the ATC and DTC 
models 

The ATC and DTC models both contribute to the reduction of sam
pling bias (ΔTsb) and an improved estimate of Tdm. To evaluate their 
individual contributions, we calculate the accuracy improvement due to 
the ATC and DTC models separately and assess the respective contri
butions using the six estimates of daily mean LST defined in Table 2. 

When compared against Tdm_true (i.e., mean LST obtained from 
hourly observations), the difference between the accuracy of Tdm_cloud_

free (i.e., the mean of cloud-free observations) and Tdm_ATC_four (i.e., the 
mean of four LSTs at the four satellite overpass times with under-cloud 
LSTs reconstructed by the ATC model) reflects the contribution of the 
ATC model, i.e., the difference between the means of ΔTA and ΔTB (see 
Fig. 9). The results show that the ATC model reduces the MAEs of Tdm 
from around 4.2 K (for Tdm_cloud_free) to 2.0 K (for Tdm_ATC_four) at the 
daily scale and from 2.5 K (for Tdm_cloud_free) to 2.0 K (for Tdm_ATC_four) at 
the monthly scale. The reduction in ΔTsb indicates that using under- 
cloud LSTs reconstructed by the ATC model yields better estimates of 
Tdm. 

The difference in accuracy between Tdm_cloud_free and Tdm_obs_four (i.e., 
the mean of the four LST actually observed at the four overpass times), 
shown in Fig. 9 as the difference between the means of ΔTA and ΔTC, 
reflects the maximum reduction in ΔTsb that can be achieved by under- 
cloud LSTs reconstruction. The assessments show that the use of actual 
under-cloud LST observations reduces the MAE from 4.2 K (for 
Tdm_cloud_free) to 1.6 K (for Tdm_obs_four) at the daily scale and from 2.5 K 
(for Tdm_cloud_free) to 1.6 K (for Tdm_obs_four) at the monthly scale. 
Compared with the MAE of Tdm_ATC_four (around 2.0 K, shown as ΔTB in 
Fig. 9), the use of actual under-cloud LST observations reduces the MAE 
by 0.4 K, (the difference between the means of ΔTB and ΔTC in Fig. 9), 
which partly reflects the uncertainty introduced by the ATC model (see 
Section 4.4). However, even with four actual under-cloud LST 

Fig. 5. Sampling bias (Tdm_cloud_free − Tdm_true) at the daily scale obtained from 
all SURFRAD data. (a) displays MAEs (boxplots) and biases (gray line) of 
Tdm_cloud_free − Tdm_true for the sixteen cases illustrated in (b). Red colour rep
resents four valid LSTs per daily cycle. Orange, green, and blue indicate that 
there are more than, equal, and fewer valid LST observations during the day 
than at night, respectively. No value for Case 16 is provided because in this 
case, all four daily observations are invalid. (c) displays the percentage of each 
case. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 6. Sampling bias (Tdm_cloud_free − Tdm_true) at the monthly scale obtained 
from all SURFRAD data. Red, orange, blue, and green represent winter, spring, 
summer, and autumn, respectively. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Fig. 7. Errors (represented by the MAE and mean 
bias) of Tdm_cloud_free (red points and green lines) 
and Tdm_ATC_DTC (purple and orange lines) at the 
daily scale. Errors for each SURFRAD site are pre
sented from (a) to (g) and overall errors for seven 
sites are presented in (h). The angular and radial 
coordinates of the polar figures denote the day of 
year and daily errors, respectively. The error of 
Tdm_cloud_free was calculated based on Case 1 in 
Fig. 5b. The gray shadow background displays the 
percentage of overcast days within the 30-day in
tervals (i.e., Cases 2–16 within the 30-day in
tervals), with the axis below (g) and (h) indicating 
the corresponding percentage. (For interpretation 
of the references to colour in this figure legend, the 
reader is referred to the web version of this article.)   
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observations, the MAE of Tdm_obs_four (ΔTC in Fig. 9a and c) is still about 
1.6 K at the daily and monthly scales. Over bare soils, the MAEs of 
Tdm_obs_four may become even higher, e.g., up to 2.5 K at TBL and DRA 
sites at the daily scale. This indicates that estimating Tdm as the direct 
mean of the four LSTs at the overpass times is inaccurate and a more 
frequent sampling within the diurnal dynamics is necessary. 

Employing the ATC model ensures the availability of four valid LSTs 
per day (see Fig. 2): these then can serve as input to the four-parameter 
DTC model and for calculating Tdm. The contribution of the DTC model 
can be isolated by comparing the MAEs for Tdm_ATC_four (ΔTB in Fig. 9; 
only the ATC model is used) and Tdm_ATC_DTC (ΔTD in Fig. 9; the ATC and 
DTC models are both used). Fig. 9 illustrates that the use of the DTC 

model reduces MAE from around 2.0 K (for Tdm_ATC_four) to 1.0 K (for 
Tdm_ATC_DTC) at the daily scale and from 2.0 K (for Tdm_ATC_four) to 0.5 K 
(for Tdm_ATC_DTC) at the monthly scale. 

The contribution of the DTC model can also be studied in isolation by 
comparing the differences in accuracy obtained for Tdm_obs_four (i.e., the 
mean of the four true LST observations per day) and Tdm_obs_DTC (for 
which the DTC model and four actual LST observations per day are 
combined). In Fig. 9 this corresponds to the differences between means 
of ΔTC and ΔTE: the results show that MAE decreases from around 1.6 K 
(for Tdm_obs_four) to 0.8 K (for Tdm_obs_DTC) at the daily scale and from 1.5 
K (for Tdm_obs_four) to 0.5 K (for Tdm_obs_DTC) at the monthly scale (see 
Fig. 9). The similar performance of Tdm_obs_DTC and Tdm_ATC_DTC (i.e., the 

Fig. 8. Errors (represented by MAE and mean bias) of Tdm_cloud_free and Tdm_ATC_DTC at the monthly scale. Errors at each SURFRAD site are presented from (a) to (g) 
and overall errors of seven sites are presented in (h). 
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similarity of ΔTD and ΔTE in Fig. 9), where the former performs slightly 
better at the daily scale but the two getting very close at the monthly 
scale, demonstrates the robustness of DTC model. In other words, in 
spite of some bias of the ATC model (see Section 4.4), the ADTC-based 
framework can still estimate Tdm accurately. 

In summary, for the data used here and with the MAE of Tdm_cloud_free 
at the daily scale as the baseline, employing the ATC model reduces MAE 
from 4.2 K to 2.0 K (from ΔTA to ΔTB in Fig. 9). When LSTs are first 
reconstructed with the ATC model, the subsequent use of the DTC model 
reduces the MAE from 2.0 K to 1.0 K (from ΔTB to ΔTD in Fig. 9). 

4.4. Uncertainty analysis 

Using under-cloud LST observations, i.e., in-situ data, as reference, 
Fig. 10 displays the monthly MAEs and biases for LSTs obtained with the 
ATC model during the day and at night: the mean MAE, calculated over 
all months and all sites, is larger during the day (3.0 K) than at night (1.9 
K). Furthermore, the mean bias is positive during the day (2.6 K) but 
negative at night (− 1.1 K). The relatively larger MAE during the day can 
be explained by the stronger impact of clouds on solar irradiation and, 
therefore, on daytime LST (Ermida et al., 2019). Considering that clouds 
usually cool the surface during daytime while they keep it warm at night 

Fig. 9. The separate contributions of the ATC and DTC models in estimating Tdm. Differences with respect to Tdm_true are shown for Tdm_cloud_free, Tdm_ATC_four, 
Tdm_obs_four, Tdm_ATC_DTC, and Tdm_obs_DTC (variables are explained in Table 2). Boxplots for MAE and bias at the daily scale are given in (a) and (b), respectively, while 
(c) and (d) show the respective values at the monthly scale. Errors of Tdm_cloud_free at the daily scale are calculated for all the sixteen cases (see Fig. 5). 

Fig. 10. Monthly MAEs and biases for ATC reconstruction results validated against SURFRAD data. Daytime and nighttime results are given in (a) and (b), 
respectively. Also provided are the MAE and bias averaged over all months for the seven SURFRAD sites (at the top of each subplot). 
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(Ermida et al., 2019; Jin, 2000; Liu et al., 2019; Long et al., 2020), a 
positive (negative) daytime (nighttime) bias is reasonable, since under- 
cloud LSTs reconstructed from cloud-free observations tend to be 
overestimated (underestimated) during the day (at night). While the 
errors of under-cloud LSTs reconstructed with the ATC model are not 
small, they are acceptable when compared to those obtained with PMW 
and SEB methods (Duan et al., 2017; Zeng et al., 2018; Zhang et al., 
2019). The relatively low accuracy partly results from the limited 
capability of the ATC model to describe the impact of cloud disturbance, 
even if surface air temperatures under both cloud-free and overcast 
conditions are used additionally (Liu et al., 2019; Zou et al., 2018). 

Although the instantaneous under-cloud LSTs reconstructed by the 
ATC model have limited accuracy, the combination of the ATC and DTC 
models is sufficiently robust for estimating Tdm with a significantly 
higher accuracy under various cloud-contaminated conditions. To assess 
the robustness of the DTC model to ATC modelling uncertainty and 
short-term LST fluctuation in estimating Tdm, we compare the MAEs of 
the DTC models in terms of instantaneous temperature (i.e., Tin_ATC_DTC) 
as well as daily mean temperature (i.e., Tdm_ATC_DTC) (Fig. 11). For Cases 
1 to 16 (Fig. 5), with the number of invalid LSTs (blocked by clouds) 
increasing gradually, the MAE of Tin_ATC_DTC increases from 1.9 K to 2.4 
K; in contrast, the MAE of Tdm_ATC_DTC remains relatively stable at 
around 1.0 K. The relatively larger errors of Tin_ATC_DTC (instantaneous 
temperature) indicate that the used DTC model, which has been devel
oped for clear-sky conditions, is unable to reproduce short term LST 
fluctuations, e.g., due to clouds. In contrast, the significantly lower 
MAEs of Tdm_ATC_DTC (daily mean temperature) for Cases 1 to 16 
demonstrate the robustness when using the DTC model for estimating 
Tdm. 

In order to further illustrate the robustness of the DTC modelling in 
estimating Tdm, the comparison between in-situ and modelled LSTs for 
six typical days characterized by various cloud-contaminated conditions 
is shown in Fig. 12. In terms of instantaneous LST, the results illustrate 
that the accuracy of the DTC modelling generally decreases with the 
increase of cloud contamination, which is understandable in consider
ation of the clear-sky hypothesis required for the DTC model (Göttsche 
and Olesen, 2001, 2009; Hong et al., 2018). Besides, the MAE of 
Tin_ATC_DTC is often greater than that of Tin_obs_DTC (see Fig. 12d and f in 
particular), indicating the large impact of the ATC model on the hourly 
LSTs simulated by the DTC model. By contrast, in terms of daily mean 
LST, the MAEs of Tdm_ATC_DTC (or Tdm_obs_DTC) are reduced considerably 
when compared with Tin_ATC_DTC (or Tin_obs_DTC), partly due to the offset 
effect between positive and negative biases during the day and at night, 
respectively. Moreover, as for the average error of the six examples 
(given in Fig. 12), the MAE estimated from Tdm_ATC_DTC is even 0.1 K 
lower than that of Tdm_obs_DTC. The differences in accuracy between 
instantaneous and daily mean LSTs indicate that, although the hourly 

LSTs interpolated with the DTC model may be sensitive to short-term 
LST fluctuations as well as the ATC modelling errors, the estimation of 
Tdm with the ADTC-based framework remains robust even under over
cast conditions. 

4.5. Discussion 

Our analyses have shown that the ADTC-based framework can 
considerably reduce the sampling bias (ΔTsb) and yields spatiotempo
rally continuous estimates of Tdm under cloud-free and overcast condi
tions. The framework is easily implemented as it only includes an ATC 
model and a DTC model. In addition, the framework only requires LST 
products from tandem polar-orbiters (e.g., from MODIS) and some 
reanalysis data as inputs: therefore, the framework is globally applicable 
and independent of location (see Table S2, Figs. S1&S5). Further vali
dations with in-situ LSTs obtained from 115 globally distributed 
FLUXNET sites (please see Figs. S3 & S4 in the Supplementary Material) 
are mostly comparable to those with the SURFRAD dataset (Figs. 9 & 
10). The MAEs of Tdm_ATC_DTC for the FLUXNET sites are mostly less than 
1.5 K (Fig. S5 & Table S2), which indicates the global applicability of the 
ADTC-based framework. Therefore, with adequate computational re
sources, the ADTC-based framework can be used to generate global 1-km 
Tdm products. However, in order to improve the obtained estimates of 
global daily mean or even hourly 1-km LSTs, future work on the ADTC- 
based framework may focus on the following aspects:  

(I) Accuracy improvement: while our results show that Tdm accuracy 
is generally convincing (MAE around 1.0 K at the daily scale), the 
uncertainty analysis (refer to Section 4.4) reveals that (1) 
instantaneous under-cloud LSTs reconstructed by the ATC model 
are still biased and (2) diurnal LST dynamics reconstructed by the 
DTC model do not describe short-term LST fluctuations due to the 
limitation of clear-sky hypothesis. In order to reduce the bias of 
the under-cloud LSTs reconstructed by the ATC model, informa
tion on shortwave radiation and cloud cover could be integrated 
into the framework (Liu et al., 2019; Wang et al., 2020; Zeng 
et al., 2018; Zhang et al., 2017; Zhao and Duan, 2020). To obtain 
temporally continuous LSTs of higher accuracy, the DTC model 
used in this study may be further improved to suit overcast 
condition, e.g., by incorporating surface variables from reanalysis 
data or output variables of land surface models (Jin, 2000; Long 
et al., 2020; Martins et al., 2019; Zhang et al., 2015). However, it 
should be noted that the ADTC-based framework might become 
less applicable at the global scale if many auxiliary data or more 
complex models are incorporated. Therefore, a balance between 
modelling accuracy and global applicability (or simplicity) 
should be considered and the design of the Tdm estimation 
framework should consider the application scale at which the Tdm 
are to be obtained (e.g., local vs. global applications).  

(II) Improvement towards global applications: the ADTC-based 
framework performs nonlinear ATC and DTC modelling on a 
pixel-by-pixel basis. This indicates that its application on a global 
(or a very large) scale at the 1 km spatial resolution would be 
extremely time-consuming. Since each pixel is independent 
within the calculation, parallel computation is potentially helpful 
to reduce processing time, but the computation resource may be 
an issue that needs further consideration. Previous studies have 
shown that the controlling parameters of the ATC and DTC 
models (e.g., the daily/annual mean and amplitude in LST) are 
highly consistent between neighboring pixels within a small area 
(Bechtel, 2015; Fu and Weng, 2018; Holmes et al., 2013; Zhou 
et al., 2013), which could be used to improve the algorithm ef
ficiency (Quan et al., 2014). Therefore, exploiting the spatial 
similarity of some ATC and DTC model parameters can help to 
significantly reduce the calculation redundancy of the ADTC- 
based framework. Furthermore, for global applications, the 

Fig. 11. MAEs of Tin_ATC_DTC (on white background) and Tdm_ATC_DTC (on gray 
background) for the sixteen cases in Fig. 5. The five colors represent the number 
of invalid LSTs at four daily overpass times (between 0 and 4). 
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currently used ATC model may not perform sufficiently well in 
low-latitude (e.g., tropical) regions. The adjusted ATC models 
with multiple sinusoidal curves should be more suitable for these 
regions (Bechtel, 2015; Liu et al., 2019). A similar issue arises for 
the currently used DTC model in high-latitude regions where the 
diurnal LST dynamics no longer follows a sinusoidal curve during 
the daytime and an exponential cooling at night due to the polar 
day/night phenomenon. For these regions, modified DTC models 
that consider this phenomenon can be used. In addition, for 
global LST data from polar orbiters such as MODIS, uncertainties 
may be further reduced by considering the overpass time fluc
tuations of sensors as well as surface thermal anisotropy before 
applying the ADTC-based framework (Duan et al., 2014; Ren 
et al., 2014). 

(III) New LST products: It is anticipated that the ADTC-based frame
work can be employed to estimate instantaneous (or hourly) LSTs 
(or daily maximum and minimum LST and DTR) with an 
acceptable accuracy at the monthly or seasonal scales (i.e., under 
synthetic cloud-free conditions), mostly because the ATC and 
DTC models are robust under synthetic cloud-free conditions. At 

the daily scale, once the uncertainties of the ATC and DTC models 
are further reduced as described in (I) and (II), the ADTC-based 
framework can as well be used to estimate instantaneous (or 
hourly) LSTs and the associated daily maximum and minimum 
LST and DTR. However, we need to emphasize that instantaneous 
LST modelling can be costly and is unnecessary if the goal is to 
estimate daily maximum and minimum LST (or DTR). In that 
case, other more efficient approaches can be used, which bypass 
the costly instantaneous modelling, e.g., an empirical relation
ship between DTR and the four daily LST observations and some 
auxiliary data can be employed (Crosson et al., 2012; Duan et al., 
2014). 

5. Conclusions 

Traditional methods to calculate daily (monthly) mean LST (Tdm) 
have a large sampling bias (ΔTsb) when directly averaging cloud-free 
LSTs from tandem polar orbiters. To reduce the ΔTsb, this study pro
posed an ADTC-based framework that combines an enhanced ATC 
model with a four-parameter DTC model and applied it to thermal 

Fig. 12. Typical examples of DTC modelling results obtained for six SURFRAD sites in 2017. The blue (red) numbers in the upper right corners provide the MAEs of 
Tin_ATC_DTC and Tdm_ATC_DTC (Tin_obs_DTC and Tdm_obs_DTC). In (a), the conditions are completely cloud-free: therefore, the results for Tin_ATC_DTC and Tin_obs_DTC are 
identical (i.e., ATC modelling is not needed). (b)-(f) represent the cases with increasing cloud contamination. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 
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observations from tandem polar orbiters. Using geostationary satellite 
data (FY-2F and MSG-SEVIRI) and in-situ measurements (SURFRAD), 
the ADTC-based framework was validated under cloud-free and overcast 
conditions at daily and monthly scales. We additionally analyzed the 
individual contributions and uncertainties of the ATC and DTC models 
to the Tdm estimates. 

Our major findings include the following three aspects. (1) It is 
usually difficult to obtain four valid daily LSTs from polar orbiters to 
estimate Tdm. Furthermore, Tdm obtained by directly averaging cloud- 
free observations can yield ΔTsb larger than 2.0 K even when four 
cloud-free LSTs per daily cycle are available. At the monthly scale, direct 
averaging can also result in positive ΔTsb larger than 2.0 K. (2) The 
proposed ADTC-based framework is able to reduce ΔTsb considerably 
and provides spatiotemporally continuous Tdm with a MAE of around 
1.0 K (0.5 K) at the daily (monthly) scale. (3) The uncertainty analysis 
shows that the ATC model provides valuable under-cloud LST estimates 
and is able to reduce the MAE of Tdm from around 4.2 K to 2.0 K. The 
DTC model displays a robust performance and is able to reduce the MAE 
of Tdm further, i.e. for the data examples used here from around 2.0 K to 
1.0 K. 

When applied to thermal observations from tandem polar orbiters, 
the ADTC-based framework not only reduces ΔTsb and estimates Tdm 
with an acceptable accuracy, but it also produces spatiotemporally 
continuous Tdm. Furthermore, the framework is readily applied on the 
global scale, since it is relatively simple and requires few publicly 
available data as inputs. Despite the already good accuracy towards the 
estimation of Tdm, the developed ADTC-based framework could be 
further improved by using more complex ATC and DTC models. How
ever, in its current form the framework provides a simple, robust, and 
sufficiently accurate approach and will be highly useful for many ap
plications requiring Tdm as input. 
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Martin, M.A., Ghent, D., Pires, A.C., Göttsche, F.-M., Cermak, J., Remedios, J.J., 2019. 
Comprehensive in situ validation of five satellite land surface temperature data sets 
over multiple stations and years. Remote Sens. 11, 479. 

Martins, J.P.A., Trigo, I.F., Ghilain, N., Jimenez, C., Göttsche, F.-M., Ermida, S.L., 
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