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Land disturbances are fundamental drivers of terrestrial ecosystem
dynamics, influencing biodiversity, carbon cycling and land-atmosphere
interactions. An understanding of changes in their regimes is crucial for
predicting future ecosystem trajectories and guiding sustainable land
management. Here we leverage the long-term record of Landsat imagery to
create high-resolution (30 m) maps of annual land disturbance agents across
the contiguous USA from 1988 t0 2022. We find that 178.50 million hectares of
USland have been cumulatively disturbed over this period. Human-directed
disturbances account for 65% of this total, driven by logging, agricultural
disturbance and construction. Our analysis reveals a widespread declinein
human-directed disturbances (-59.21 kha yr™) alongside a countervailing
surge (20.31 kha yr™) inless controllable, undirected ‘wild’ disturbances
(fire, wind/geohazard and vegetation stress), which account for 24% of

the total disturbed area. The disturbance regime shift analysis finds that
although human-directed disturbances are now declining in frequency, wild
disturbance frequencies are increasing at an accelerated pace. The patch
size of human-directed disturbances is shrinking, while the wild disturbance
patch size shows both expanding and contracting trends. Disturbance
severity is rising across most of the USA. Our findings highlight an urgent
need to understand and adapt to these diverging disturbance trajectories, as
they will profoundly shape the future of US landscapes.

Land disturbances are a primary architect of Earth’s terrestrial eco-
systems, shaping their patterns, processes and resilience. These dis-
turbance events affect the natural world and human societies through
effects on resource availability, natural hazards and climate change'.
Historically, two distinct narratives have shaped our understanding
of disturbance. One describes nature’s raw power: wildfiresignited by
lightning; hurricanes reshaping coastlines; pest outbreaks transform-
ing forests. These natural disturbances have been agents of change

for millennia, integral to the evolution and dynamics of ecosystems?.
The other narrative chronicles the rise of humanimpact. Over the past
century, anthropogenic disturbances such as logging, agricultural
disturbance and construction have intensified, leaving a pervasive
footprint on Earth’s ecosystems’”’.

However, these two tales are now intertwined. Human actions
are altering natural disturbance regimes, blurring the lines between
‘natural’ and ‘anthropogenic’. This blurring is driven not only by direct
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interventions suchas prescribed burning or dam constructionbutalso
by theindirect effects of anthropogenic climate change®, which could
amplify the frequency, size and severity of many natural disturbances.
For example, rising global temperatures are contributing to more
intense hurricanes’, prolonged droughts'® and expanded ranges of
forest pests'. These changes, in turn, are contributing to a surge in
what we termundirected ‘wild’ disturbances—those agents of change,
including fire, wind/geohazard and stress, that can be associated with
either natural or anthropogenic sources, but are largely not explicitly
directed by humanactions. Water disturbance is associated with both
direct human interventions (for example, dams and reservoirs) and
natural events (for example, precipitation and sealevel rise) and is thus
treated as a distinct category, recognizing its dual drivers.

This convergence of intensifying human impacts and less con-
trollable wild disturbances creates a complex and rapidly changing
disturbance landscape, making it crucial to understand not just indi-
vidual disturbance events, but also the broader context of disturbance
regimes—the cumulative effect of multiple disturbances across space
and time®. Disturbance regimes, characterized by their frequency, size
and severity, profoundly influence ecosystem structure and function,
shaping their response to change”.

However, mapping and quantifying disturbance regimes at the
needed scale and resolution, particularly for different causal agents,
remains a challenge™. While research has illuminated shifts in specific
disturbance agents and their potential consequences” ™, a compre-
hensive understanding of these shifts across diverse drivers and land
surface types remains elusive'. This gap is exacerbated by limitations
inexisting disturbance datasets***, which often lack the spatial detail,
temporal depth and agent specificity needed to capture the complexity
of US disturbance regimes.

Here we define land disturbance as any relatively discrete event
that substantially alters the biophysical state of the land surface,
including both natural and anthropogenic drivers>**. Our approach
focuses on capturing detectable deviations from baseline conditions
orestablished patterns using satellite observations. Consequently, our
analysis includes a broad spectrum of events that fit this definition,
such as changes in agricultural practices or constructions in already
developed areas, all of which represent detectable changes relevant
tolandscape dynamics. Toinvestigate these dynamics across the con-
tiguous USA, we created a 35-yr (1988-2022) land disturbance dataset
using dense satellite time series, object-based analysis and machine
learning (Fig.1). This dataset allows us to quantify not only the spatial
extent of different disturbance agents but also shifting disturbance
regimes. Itis useful to contrast our focus onland disturbance with the
concept of land cover and land use change (LCLUC). LCLUC primarily
describes the outcome of change, measured in terms of cover types or
land uses (for example, shift from forest to cropland), whereas land
disturbance is the driver”. Disturbances frequently occur without
necessarily altering the LCLUC category (for example, forest stress
from drought or pests, shifts in agricultural intensity or fallowing
cycles)”, while LCLUC cansometimes occur without adiscrete distur-
bance event (for example, gradual forest regeneration). For example,
agricultural expansion may occur once at a given location, but agri-
cultural disturbance canrecur through abandonment, intensification
or altered management practices (Extended Data Fig.1). Our analysis
addresses seven major disturbance agents: logging; construction;
vegetation stress; agricultural disturbance; wind/geohazard; water
disturbance; and fire (Extended Data Table 1).

High-resolution land disturbance agent maps

We leveraged 13.45 million Landsat images to generate a 30-m resolu-
tion dataset of annual land disturbance maps across the USA from
1988102022 (Methods), capturing the timing, causal agent and sever-
ity (Fig. 1 and Extended Data Fig. 2). This dataset identifies diverse
disturbances, such as logging in Arkansas (Fig. 1b), expansion and

reconstruction of Chicago O’Hare International Airport (Fig. 1c),
crop rotation between corn, cotton and wheat in Texas (Fig. 1d), 2011
severe drought in the southern USA (Fig. 1e), 2017 Irma hurricane in
Florida (Fig. 1f), 2020 August Complex fire in California (Fig. 1g) and
water disturbance in Malheur Lake (Fig. 1h). Our maps were rigorously
validated using astratified random sample of 907 plots (30 m x 30 m),
and the estimated user’s and producer’s accuracies exceeded 75% for
most disturbance agents (Extended Data Table 2). Accuracies for wind/
geohazard were lower (about 50%), but their limited extent had mini-
mal impact on overall map accuracy (>99%). Mapped stress captures
spectrally detectable events such as moderate-to-severe drought and
major pest outbreaks, although more subtle physiological stress may
be underestimated.

Disturbance footprint

Across the USA (1988-2022), 18% of the land was disturbed at least
once, but the cumulative area affected by repeated disturbances
totalled 178.50 million hectares (Mha; 95% confidence interval (CI)
170.76-186.24; Extended Data Table 3), equivalent to roughly one
third of the nation’s land surface. Human-directed disturbances were
the primary driver (65% of the total disturbed area). Logging was the
largest component (58.85 Mha; 95% Cl 52.70-65.00), followed by agri-
cultural disturbance (43.00 Mha; 95% CI 37.19-48.81) and construc-
tion (13.73 Mha; 95% CI11.74-15.72). Wild disturbances accounted
for a growing proportion (24%), dominated by fire (15.40 Mha
(95% C114.13-16.67)) and stress (24.38 Mha (95% CI 21.25-27.51)),
while wind/geohazard contributed a smaller share (2.6 Mha;
95% Cl 0.56-4.64; Extended Data Table 3). Water disturbances
accounted for the remaining 11% (20.54 Mha (95% C117.80-23.28)).

The disturbance footprintis highly variable (Extended DataFig. 3
and Extended Data Table 3). Regionally, the Southeast was the most
heavily disturbed, accounting for 34% (62.49 Mha (95% Cl 41.17-83.81))
ofthe total disturbed area. This is probably areflection of the region’s
prominent logging industry® as well as its vulnerability to frequent hur-
ricanes®. By contrast, the Northeast experienced the least disturbance
(3.56 Mha (95% C10.21-6.91)).

We also describe geographic patterns of disturbance by illustrat-
ing variation across latitudinal and longitudinal gradients (Fig. 1i,j).
Disturbances are more extensive in southern latitudes, with more
than 75% of the total disturbed area concentrated in the Southeast,
Southern Great Plains and Southwest (Extended Data Table 3). While
these regions show a mix of human-driven disturbances such as log-
ging and construction, they are also vulnerable to the power of wild
forces, such as stress, much of which is probably associated with
drought, and wind/geohazard (Fig. 1j). Geographic patterns further
highlight a concentration of logging and construction in the East
(Fig. 1i). Wind/geohazard disturbances, particularly hurricanes, are
clustered along the southeastern coast, while fires are more common
in the West. Water and agricultural disturbances show peaks in the
central regions.

Diverging human-directed and wild

disturbance trends

Temporal trend analysis reveals two contrasting trajectories
(Fig.2). Overall, total disturbed areadeclined annually (-47.73 kha yr™
(95% C1 -20.42 to —-81.44)), driven by reductions in logging
(-8.14 khayr™(95% CI -13.86 to —2.97)), construction (-6.72 kha yr™
(95% C1-9.30 to -3.90)), agricultural disturbance (-43.52 kha yr™
(95% C1-62.84 to —26.34)) and water disturbance (-6.20 kha yr™
(95% C1-10.12 to -1.90)). This decrease of human-directed disturbance
areas (-59.21 kha yr™(95% CI -80.90 to -43.03)) probably reflects policy
changes, technological advancements in agriculture and forestry,
and economic shifts. The history of US agricultural policy is a prime
example. While policiesin the 1980s aimed at boosting production and
exports, leading to more intensive agricultural activities and potential
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Fig.1|Land disturbance agent maps across the USA (1988-2022). a, USA-wide
map highlighting each pixel’s most recent disturbance agent, revealing the
spatial distribution and diversity of disturbances at 30-m resolution. The solid
boundaries represent US Fifth National Climate Assessment regions, while the
dashed boundaries indicate state borders. b-h, Examples of disturbance
agents fromlocations 1-7 of the USA include human-directed disturbances
(logging (b), construction (c), agricultural disturbance (dist.; d)), wild
disturbances (stress (e), wind/geohazard (f), fire (g)) and water disturbance (h).
The corresponding disturbance severity maps are presented in Extended

Wild disturbance

DataFig. 2. Allmaps are shown in Albers equal-area conic projection.

ij, Longitudinal (i) and latitudinal (j) profiles overlaid on this projection of
stacked disturbance areas. Area statistics (Mha) are calculated at 15-km intervals
and stacked chronologically from 1988 to 2022 for different disturbance agents.
All panels share the same legend: brighter colour curves represent earlier
disturbance years (towards 1988), while darker colours indicate more recent
years (towards 2022). Full-resolution maps are available at the interactive
explorer https://ee-gers.projects.earthengine.app/view/us-disturbance.

environmental impacts, subsequent Farm Bills emphasized environ-
mental compliance, renewable energy and climate-smart agricultural
practices, potentially contributing to the decline in agricultural distur-
bance we observed. Similarly, the US Lacey Act, amended in 2008 to
preventillegal timber harvesting, probably played a role in reducing
logging disturbances. Economically, the 2008 financial crisis clearly
affected construction, which has not returned to pre-crisis levels
despite recovery (Fig. 2c).

By contrast, we see a significantincreaseinwild disturbance areas
(20.31khayr™ (95% C11.97-35.65); Fig. 2a), with fire, stress and wind/
geohazard exhibitingincreasing trends (Fig. 2e-g). Thisriseis probably

driven by climate change, altered fire regimes? and other environmen-
tal factors. The increase in fire (11.24 kha yr™ (95% C1 3.90-23.54)) is
particularly pronounced, reflecting the growing influence of climate
change anditsinteraction with drought, pest outbreaks and historical
fire suppression on wildfire activity across the western USA, coupled
with evolving fire management strategies. Stress-related disturbances
show considerable interannual variability, with peaks linked to major
drought events (for example, 2012)%, and exhibit a non-statistically
significant, increasing trend overall (0.61 kha yr™(95% C1-3.96-10.64),
P=0.82). Similarly, wind/geohazard disturbances have increased
(0.95khayr?(95% C10.00-1.64), P=0.06), potentially reflecting the
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Fig.2| Temporal trajectories of land disturbances across the USA (1988-2022).
a, Temporal trends in annual disturbed area for total land disturbance
(P=0.00377), human-directed disturbance (P < 0.00001) and wild disturbance
(P=0.02484).b-h, Temporal trends for logging (P=0.00196; b), construction
(P=0.00006; ¢), agricultural disturbance (P < 0.00001; d), stress (P = 0.82025;
e), wind/geohazard (P=0.06085; f), fire (P= 0.00697; g) and water disturbance
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(P=0.06085; h). Trends (kha yr™) estimated using the Theil-Sen estimator, with
95% Cls (shaded areas) and Pvalues derived from the two-tailed Mann-Kendall
test (Methods). Solid points represent the annual unbiased disturbance area,
and the grey error bars indicate the 95% Cl based on the validation dataset
(Extended Data Table 2).

risein extreme weather®. These contrasting trends underscore amajor
shiftin the drivers of land disturbance across the USA.

Land disturbance regimes

US disturbance regimes vary widely in frequency, size and severity
(Fig. 3). The annual average frequency of land disturbance at the
landscape scale (hexagonal grid) is 0.36 patches per square kilometre
per year, with the top 1% reaching 1.63 patches per square kilometre
(Extended Data Table 4). Hotspots of intense, recurring disturbance (>1
patch per square kilometre per year) emerge in agricultural regions of
California, Washington State and the Southern Great Plains, driven by
dynamicagricultural systems (Extended DataFig.4a (3)). The Southeast
also experienced a high frequency of disturbances, primarily fromlog-
ging, wind/geohazard (for example, hurricanes) and water disturbance
(Extended Data Fig. 4a (1, 5and 7)). Across the USA, human-directed
disturbances and water disturbance are generally more frequent than
the other three wild disturbance categories (Extended Data Fig. 4aand
Extended Data Table 4). However, in parts of the Northeast, Midwest

and Northwest, lower disturbance frequencies point to relatively more
stable ecosystems (Fig. 3a).

The size of disturbance patches across the USA reveals a large
contrast between human-directed and wild disturbance (Fig. 3b).
While the average disturbance size spans 2.51 hectares (ha), wild dis-
turbances—notably stress (16.82 ha) and fire (10.72 ha)—carve out sub-
stantially larger areas per event than human-directed disturbances such
aslogging (3.06 ha) or construction (1.24 ha; Extended Data Table 4),
a pattern particularly pronounced in the western USA. While smaller
disturbance patches dominate the East, considerable variation exists
(Fig.3b). Forexample, logging and wind/geohazard (for example, hur-
ricanes) contribute to larger patch sizes in the Southeast, reflecting
theregion’s forest management practices and susceptibility to major
storms (Extended Data Fig. 4b (1and 5)).

The severity of land disturbance, ranging from 1 (low) to 4 (very
high), varies markedly (Fig.3c). The average severity is 2.51 (between
medium to high; Extended Data Table 4), with high-average-severity
disturbance hotspots in the central regions where multiple agents
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Fig. 3| Land disturbance regimes across the USA represented in 2,500-km?
hexagonal grids (1988-2022). a, Average disturbance patch frequency.

b, Average disturbance patch size. ¢, Average disturbance patch severity, scaled
from1to4, where O-1lindicates undisturbed to low, 1-2 indicates low to medium,
2-3indicates medium to high, and 3-4 indicates high to very high. All maps are
shown in Albers equal-area conic projection. The black boundaries represent US
Fifth National Climate Assessment regions, while the grey boundaries indicate

state borders. The consistent colour scale across all maps facilitates direct
comparison of regime characteristics across different disturbance agents.
Eachindividual disturbance agent regime for logging, construction, agricultural
disturbance, stress, wind/geohazard, fire and water disturbance is provided in
Extended Data Fig. 4. Histograms corresponding to each map are provided in
Supplementary Fig. 6.

converge (Extended Data Fig. 4c (1-4 and 6)). Fire severity is espe-
cially prominent in the South Great Plains, Midwest and Southeast
(Extended Data Fig. 4c (6)). Wind/geohazard also contributes to
high severity in the central regions and along the hurricane-prone
eastern coast (Extended Data Fig. 4c (5)). Higher-severity water dis-
turbances are prevalent in most regions except for the Southeast
(Extended Data Fig.4c (7))

Shifting and diverging disturbance regime

Our analysis reveals a dynamic landscape of disturbance regimes
(Fig.4). While overall disturbance frequency declined between 1988 and
2022 (56% of hexagonal grids exhibiting significantly negative trends
and 4% showing significantly positive trends; Fig. 4a and Extended
Data Table 5), the story is far from uniform. The overall decline is pri-
marily drivenby reductionin human-directed and water disturbances
(Extended Data Table 5). This pattern suggests that policy changes
aimed at promoting more sustainable land management practices,
as well as technological advancements and economic shifts, may be
having a measurable effect. Most of these declining trends are also
decelerating (see density plotin Fig. 4a), further hinting at a potential
stabilization of human-directed and water disturbance regimesinsome
regions. However, this trend is counterbalanced by arapid surge in wild
disturbance. Wind/geohazard, stress and fire all show accelerating
increases in disturbance frequency, with hotspots concentrated in
the Midwest and West (Extended Data Fig. 5a (4-6)). This accelerating
rise in wild forces, particularly fire, points to the growing influence
of less controllable forces, posing a challenge for land management
and conservation. Wind/geohazard disturbances, particularly hurri-
canes, exhibit the most pronounced increases in frequency along the
Southeast coast, underscoring the region’s vulnerability to increasingly
frequent and intense storms.

The size of disturbance patches also exhibits non-stationarity,
with 30% of hexagonal grids showing statistically significant temporal
trends. About half of these grids showed positive trends while the other
halfshowed negative trends (Fig. 4b and Extended Data Table 5). Larger
disturbance patches are becoming more common in the Southeast,
largely due to expanding logging operations and the impact of wind/
geohazard, especially hurricanes (Extended Data Fig. 5b (5)). By con-
trast, the size of anthropogenic disturbance patches associated with
construction and agricultural disturbance is declining in many hex-
agonal grids (Extended Data Fig. 5b (2 and 3)). This potentially reflects

trends towards intensification and more small-scale land use practices
inthose areas. However, their patch sizeisincreasingin parts of the cen-
tral USA due to new and large-scale developments. Wild disturbances
(Extended Data Fig. 5b (4-6)), however, show a mixed pattern, with
both increasing and decreasing patch sizes evident across different
regions. The maximum patch size (per hexagonal grid and per year) of
allthree wild disturbance categories has generally expanded, reflecting
the growingimpact of extreme events (Extended Data Table 5). While
most significant trends in patch size did not show clear acceleration or
deceleration, akey patternemerged. Decelerated trends, particularly
those showingadecreasein patch size, were more prevalent than accel-
erated trends, suggesting a potential slowdownin both the expansion
and contraction of disturbance patches across the USA.

The severity of land disturbance generally shows an upward
trend (Fig. 4c), with 56% of hexagonal grids experiencing a significant
increase (Extended Data Table 5). This increase is evident for most dis-
turbance agents, suggesting atrend towards more intense disturbance
events with potentially greater ecological consequences. However, a
closer examination reveals that while severity is increasing, the pace
of thatincrease is slowing down in many hexagonal grids and for most
of the disturbance agents (Extended Data Fig. 5c (1-7)), indicating a
potential future stabilization.

Discussion
Our results reveal the changing impact of human activities on US
landscapes, making a shift from direct human disturbance towards
indirect influence on overall disturbance regimes. Human-directed
disturbances, such aslogging, agricultural disturbance and construc-
tion, have dominated the past few decades, collectively accounting for
nearly two thirds of the total disturbed area (Extended Data Table 3).
However, we document a substantial decline in their frequency and
extent, encompassing a wider range of land use modifications than
previously documented®-*. For instance, the observed decline in
agricultural disturbance probably reflects acombination of reduced
expansion (as noted in earlier study®) and shifts away from certain
agricultural practices, such as changes in irrigation, tillage or inten-
sification patterns. Similarly, the decline in construction appears to
reflect not only economic cycles but also potential shifts in develop-
ment patterns.

This general decline in the USA contrasts with trends observed
in other regions, such as rising forest harvest in Europe®, rapid
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Fig. 4 |Land disturbance regime shifts across the USA in 2,500-km? hexagonal
grids (1988-2022). a, Map of disturbance frequency trend. b, Map of disturbance
size trend. ¢, Map of disturbance severity trend. Trends are estimated using the
Theil-Sen estimator, and their statistical significance is determined by the two-
tailed Mann-Kendall test (P < 0.05). Symbols indicate significantly accelerated
(+) and decelerated (\) trends, while dots denote other significant (increasing

or decreasing) trends. Each map features density plots based on landscapes

with significant trends, illustrating the distribution of trend magnitudes in

accelerated, decelerated and other significant trends. The number (N) represents
the number of hexagonal grids with significant trend. All maps are shownin
Albers equal-area conic projection. The solid boundaries represent US Fifth
National Climate Assessment regions, while the dashed boundaries indicate state
borders. The consistent colour scale across all maps facilitates direct comparison
of disturbance regime shift patterns. Each individual disturbance agent

regime trend for logging, construction, agricultural disturbance, stress, wind/
geohazard, fire and water disturbance is provided in Extended Data Fig. 5.

urbanization in China*, and agricultural expansion in Africa and
South America®. These patterns probably reflect a combination of
policy or practice changes (for example, sustainable forestry prac-
tices®® and more emphasis on land conservation), technological
advances in land management (for example, precision agriculture)
and shifts in economic conditionsin the USA, as well as outsourcing
of resource extraction to other parts of the world. The USA, while
still a major consumer of resources, has increasingly shifted the

environmental burden of production to developing nations. This shift
in resource production, while potentially contributing to reduced
human-directed disturbances within the USA, raises important ques-
tions about the global distribution of environmentalimpacts and the
equity of resource consumption.

This decline in direct human impact on the land does not signal
areturn to a pristine past. In some regions, such as the Northeast,
where humanimpacts have been extensive for centuries, the decline
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in disturbance we observe might simply reflect the fact that these
landscapes have already been heavily modified, leaving less oppor-
tunity for new, large-scale disturbance. Yet, even as direct human
land modification decreases, challenges emerge fromindirect human
influences that appear to be altering wild disturbance regimes. For
instance, anthropogenic climate change could be one factor influenc-
ing the wild disturbances that reshape our ecosystems, potentially
altering their frequency, size or severity throughindirect mechanisms
that are difficult to quantify directly. Rising global temperatures, a
key manifestation of climate change, are associated with conditions
potentially favouring more intense hurricanes, prolonged droughts
and expanded ranges of forest pests, all of which can trigger or worsen
wild force disturbances. Additionally, human activities are directly
responsible for ignitions in many wildfires, whether through acciden-
tal or intentional means®*, These indirect anthropogenicinfluences
are challenging to quantify directly using satellite data, which primar-
ily capture the proximate causes of disturbance'. Future research
should prioritize integrating our remote sensing analysis with climate
models, socioeconomic dataand other sources, such as social media
records of human-caused fires, to better disentangle the complex web
of humaninfluences.

This shift towards indirect human impacts is clearly reflected in
the accelerating surge of wild forces across the USA. Our findings,
based onacomprehensive, continental-scale analysis of 35 yr of Land-
satdata, provide auniquely detailed view of this transformation. The
westernand central USA, regions already experiencing rising wildfire
activity and widespread drought- and pest-induced stress, are experi-
encing the most marked increase in wild disturbances. While previous
studies have documented the larger footprintandincreased frequency
of individual wild disturbances such as fire and stress*****, our analysis
reveals a more comprehensive picture, highlighting several distinct
patternsof accelerating or decelerating change across all wild agents
andregime characteristics. For example, the frequency and patch size
of wild disturbances are increasing at an accelerated rate across most
regions, whereas their severity, while still increasing overall, is rising
at adecelerated pace (Fig. 4). This suggests a potential shift towards
more frequent, larger and potentially more impactful wild disturbance
eventsinthe future. These findings underscore the growing influence
of wild disturbances on US landscapes, signalling a future of greater
unpredictability.

Conclusion

The USAis entering a new era of disturbance. While our analysis sug-
gests that human impacts are declining in some areas, this trend is
accompanied by the accelerating surge of wild disturbances. Fire, stress
and wind/geohazard are reshaping US ecosystems, driven by climate
and other environmental changes, often amplified by past human
actions. The escalating frequency, size and severity of these events
pose profound challenges to landscape resilience and sustainability.
We are moving from an era of relative human control to one where wild
forces exertincreasinginfluence, suggesting amore unpredictable and
dynamic future. Traditional approaches toland management, focused
onsuppressionand control, are proving increasingly ineffective*’. Our
high-resolution, multi-decadal dataset offers a critical lens to view this
transformation, equipping scientists, policymakers and land managers
with the knowledge to develop adaptive, resilience-based strategies.
The challenge now is to transform our relationship with disturbance
from one of control to one of coexistence.

Online content

Any methods, additional references, Nature Portfolio reporting sum-
maries, source data, extended data, supplementary information,
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Methods

We leveraged long-term historical Landsat data and advanced time
series analysis algorithms to map detectable land disturbances and
their associated agents across the USA from 1988 t0 2022. The map pro-
ductionincludes Landsatimage compositing, training data collection,
disturbance detectionand agent classification. On the basis of a strati-
fied random sample, we conducted accuracy assessment, unbiased area
estimation and uncertainty quantification for the resulting product.
Finally, we quantified land disturbance regimes and regime shifts in
frequency, size and severity to provide acomprehensive understand-
ing of land disturbance dynamics across the USA.

Data

Landsat data. We analyse 13.45 million Landsat images (cloud cover-
age < 80%) from the Landsat Collection 2 Analysis Ready Data (ARD)
archive, encompassing the period from 1982 t0 2023 (Supplementary
Fig.1). Those images were provided in 5,000 x 5,000 30-m pixel tiles
(150 km x 150 km), using the Albers equal-area conic projection. The
archive included data from Landsat 4-5 Thematic Mapper, Landsat 7
Enhanced Thematic Mapper Plus and Landsat 8-9 Operational Land
Imager/Thermal Infrared Sensor. The ARD provides consistently pro-
cessed surface reflectance data, facilitating analysis across different
sensors and time periods. We utilized the surface reflectance of several
key spectral bands, including blue, green, red, near-infrared and two
short-waveinfrared (SWIR) bands. Inaddition tosurfacereflectance, we
incorporated brightness temperature data from the thermal infrared
band, which is sensitive to land surface temperature and can provide
valuable information about disturbance events, such as fire. The qual-
ity assessment band, generated using the Function of mask (Fmask)
algorithm*, enabled masking of pixels affected by clouds, cloud shad-
ows and snow/ice. To minimize the effects of bidirectional reflectance
distribution function, we selected observations fromasingle orbit path
with the smallest view zenith angles®. All Landsat datawere composited
into32-dayregular time series observations to eliminate the variation
in temporal density of the observation data (Supplementary Fig. 2),
using an adaptive compositing method** (Supplementary Methods1).

Training data. Creating accurate land disturbance maps requires
extensive and representative training data. We compiled a compre-
hensive training dataset by integrating multiple sources (for example,
existing disturbance reference datasets, survey data, land cover maps
and visualinterpretation of high-resolutionimagery), each providing
unique insights into the diverse disturbance agents: Landscape Fire
and Resource Management Planning Tools (LANDFIRE)* for logging,
construction, stress and wind/geohazard; Land Cover Trends (LCT)*
for logging, agricultural disturbance and construction; Monitoring
Trends in Burn Severity (MTBS)* for fire; Insect and Disease Survey
(IDS)*® for stress-related disturbances; Global Surface Water (GSW)*
for water disturbance; and the National Land Cover Database (NLCD)*°
for providing the land cover and land use background and disturbance
training datasample refinement. To ensure high training data quality,
we selected only disturbance patches detected by our algorithm (see
the section entitled Land disturbance detection) that overlapped
with the corresponding potential agent reference maps for over 50%
of the pixels within each patch. When multiple agents were present in
a simple disturbance patch, a majority rule was applied. Wind/geo-
hazard samples were carefully interpreted using event reports (for
example, hurricane, tornado and landslide) from the National Oce-
anic and Atmospheric Administration Severe Weather Database®,
the International Best Track Archive for Climate Stewardship®* and
the NASA (National Aeronautics and Space Administration) Global
Landslide Catalog™ to guarantee the training data quality. Details are
documented in Supplementary Methods 2.

While LCLUC information from datasets such as LCT is valuable
for identifying certain disturbance types (for example, conversion

events such as deforestation, agriculture expansion or urbanization),
this made up only part of our comprehensive training data. The NLCD
provided essential land cover context for verifying samples (for exam-
ple, ensuring construction occurred in non-forest areas, agricultural
disturbance onfarmland, stress within vegetation), but was notadirect
source of disturbance training data. Our primary approachinvolved lev-
eraging disturbance-specific datasets (for example, MTBS for fire, IDS
for stress) substantially augmented by extensive visual interpretation.
We visually analysed more than 60,000 sample patches, referencing
preliminary disturbance maps, high-resolution Google Earthimagery
and other relevant data (such as drought and pest maps), specifically
to improve representation of agents less covered by existing data-
sets, including construction, stress and wind/geohazard. The spatial
distribution of these combined training sample patches is shown in
Supplementary Fig. 3.

Land disturbance detection. The foundation of our land disturbance
mapping approachis the COntinuous monitoring of Land Disturbance
(COLD) algorithm?*. COLD, specifically designed for detecting distur-
bances from Landsat time series, offers several advantages over tradi-
tional change detection methods. First, it models the full Landsat time
series, capturing both seasonal and interannual variability in surface
reflectance. This allows for the detection of subtle disturbances that
may be missed by methods that compare only two or a few images.
Second, it providesinformation on the timing, magnitude and spectral
characteristics of disturbances, providing valuable insights into the
nature and potential drivers of these events.

COLD operates by fitting a harmonic time series model (equa-
tion (1)) to each Landsat pixel, using the least absolute shrinkage and
selection operator® to select the most informative harmonic com-
ponents (Supplementary Fig. 7). The model estimates expected spec-
tral values for each observation date based on the historical time
series. Stable pixels are those where observed values remain within
the expected range of variability defined by the model. Disturbances
are identified when six consecutive reflectance differences (Ap)
between observations (p) and model predictions (p) exceed a prede-
fined threshold®. In this study, we used a threshold of 0.95 to slightly
relax the detection criterion and reduce omission errors. This thresh-
oldindicates astatistically significant deviation from the established
spectral pattern for that pixel. In COLD, only five Landsat spectral
bands—green, red, near-infrared, SWIR1 and SWIR2—were used to
detect disturbance, but all other bands were used for estimating their
specific time series models thatinclude rich temporal-spectral infor-
mation. In thisway, COLD can provide the disturbance location at the
Landsat pixel, the disturbance time at the Landsat observation and
the corresponding disturbance magnitude. The disturbance magni-
tude was calculated as the square root of the sum of the squared
per-band change magnitude, which is calculated by the median dif-
ferences (excluding the blue and thermal infrared bands) of the con-
secutive reflectance differences at the time of a detected break®.
Disturbance magnitude is unitless, with a range of 0-1. To optimize
computational efficiency, we reduced the model updating frequency
from every new observation to every 4% of the number of observa-
tions used in previous model updating®. This can greatly (>60%)
reduce the computation time and achieve similar detection accura-
cies. Although Landsat data from 1982 to 2023 were utilized (Sup-
plementary Fig. 2), we focused on disturbance detection maps
between 1988 and 2022. This is because data before 1988 were used
to initialize time series models, and data after 2022 were used to
confirm disturbances at the end of the time series. We excluded
permanent water pixels from the GSW dataset* to focus exclusively
onland-related disturbances.
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where trepresents the Julian date, i represents the ith Landsat spectral
band, krepresents the temporal frequency of different harmonic com-
ponents (k=1,2 and 3), Trepresents the average number of days per
year (T=365.25), ay, is the coefficient for capturing the overall value
fortheith Landsat spectralband, a, ;and b, ;are coefficients for captur-
ing the intra-annual change for the ith Landsat spectral band, ¢;;
is the coefficient for capturing the interannual change for the ith
Landsat spectral band, and p;, is the surface reflectance for the ith
Landsat spectral band at Julian date ¢ based on model prediction.

Land disturbance agent classification

To attribute the agent of land disturbance identified by COLD, in this
study, we developed an object-based disturbance agent classifica-
tion approach. Assuming that land disturbance events are spatially
connected within a relatively short time (for example, one year), we
segmented each disturbance object patch through eight-connected
directions based on the COLD-detected annual per-pixel land distur-
bance maps. Objects with fewer than four pixels (about 0.4 ha) were
filtered out, as thisis usually the smallest unit that Landsat can reliably
map®. Subsequently, we extracted samples from the existing training
dataset to train random forest models, incorporating a total of 165
predictor variables fromspectral, temporal and spatial domains. These
models were then utilized to classify all pixels within each disturbance
object patch, and a majority vote was applied to determine the dis-
turbance patch’s agent. We trained a separate random forest model
for each Landsat ARD tile (Supplementary Fig. 3), using training data
extracted fromits surrounding 3 x 3 tiles.

Predictor variable. We gathered a total of 165 predictor variables for
agent classification based on three categories: the COLD outputs,
topographic information and object-based metrics of segmented
disturbance patches (Supplementary Table 2). In terms of the first
category, 121 predictor variables were derived from COLD, including
parameters of pre-disturbance, during disturbance and after distur-
bance for each pixel and each event. For the disturbance event
described by Supplementary Fig. 7, COLD created atime series model
before disturbance (pre-disturbance model), created a time series
model after disturbance (post-disturbance model) and generated
during-disturbance information for each spectral band. The pre- and
post-disturbance models indicate the land surface characteristics
(based on model coefficients and root mean square error values
describedinequation (1)) before and after a disturbance, respectively.
The during-disturbance information includes per-band change mag-
nitude, as well as per-band change magnitude trend and variation. Most
of the COLD output variables have been well documented by the
literature®, except for per-band change magnitude trend and variation.
The per-band change magnitude trend represents the trend of the
reflectance differences (Ap) between the model predictions and the
observations during the change detection process (that s, six consecu-
tive observations). A linear model based on ordinary least square
regression is used to estimate the trend, and the change magnitude
variation is calculated based on the corresponding root mean square
error, which measures the regression uncertainty. We also used the
change time to indicate when (day of year) a disturbance happened,
and the change interval to describe how long the disturbance lasted
(thatis, period between the end of pre-disturbance model and the start
of post-disturbance model), as this information could be helpful for
disturbance agent attribution.

For the topographic predictor variables, we included elevation,
slope and aspect, all of which have shown promise in classifying dis-
turbance agents**~%, We also computed the spatial metrics for each
disturbance object because different disturbance agents usually have
varied spatial patterns. First, we computed the disturbance object
textures represented by the standard deviations of change time,
change magnitude and change interval from all pixels within the same

disturbance object. Then, we calculated 12 spatial predictor variables
to describe the spatial characteristics of the disturbance object, such
as size, form and shape, using FRAGSTATS—a spatial pattern analysis
program for quantifying landscape structure®. In addition, we com-
puted the elevation range for each disturbance object as one of the
predictor variables as this could also relate to the type of disturbance
agent. For example, a geohazard caused by landslide would be more
likely to occur in regions with large elevation differences.
Classification model and strategy. We used arandom forest model®°
with 100 decision trees to balance computational efficiency and
classification accuracy. The training data of the random forest are
pixel-based, instead of at the object-level, as this can provide many
more training sample units with large variations of spectral informa-
tion. For training pixels within the same disturbance patch, they will
share the same values in the patch-based variables (Supplementary
Table 2). Ideally, the number of training sample units for each class is
based on its area proportion with some limits on dominant and rare
classes®. However, there is no way to know the area proportion for
each class before we have amap of them. To solve this chicken-and-egg
dilemma, we used an iterative procedure to optimize training data
selection (Supplementary Methods 3). First, we created a preliminary
disturbance agent classification map using an equal distribution of
pixel-based training data. Then, using the class proportions derived
from this preliminary map (with a minimum of 3% and a maximum of
40% per class)®, we extracted a proportionally distributed dataset to
train anew random forest model which was used to generate the final
land disturbance agent map. This proportional sampling strategy,
evaluated using five diverse regions across the USA (Supplementary
Fig. 4), outperformed equal sampling and achieved a stable accuracy
using 10,000 training pixels (Supplementary Fig. 5).

Refining classification map. We conducted arigorous manual refine-
ment process to refine the initial USA-wide disturbance agent maps
derived from open-source training data. We identified areas of classi-
ficationerrorinthe preliminary maps, such as confusion between con-
struction and agricultural disturbance, stress (for example, drought)
and climate variability, water disturbance and agricultural disturbance
(for example, irrigation), and wind/geohazard and logging. At these
locations, we visually interpreted high-resolutionimagery and added
over 60,000 manually refined training samples to update the random
forest models (Supplementary Fig. 3). Thisiterative refinement process
was essential for achieving high classification accuracy and ensuring
thereliability of our final disturbance agent maps. These refined sam-
ples were also incorporated into the training of final USA-wide maps
in cases where the pre-train models were having issues.

Accuracy assessment and unbiased area estimation

We used the three most widely used metrics, including overall accu-
racy, user’s accuracy and producer’s accuracy, and followed the ‘good
practice’ recommendation®. We used an unbiased estimator of area
based on the reference sample data and used the map to improve
precision of the area estimates. We selected a set of stratified ran-
dom validation samples using land disturbance agent types as the
strata. In this stratification, each sample plot represents a location
on the ground (30 m) and a time (calendar year). We selected 907
sample plots across strata, as detailed in Extended Data Table 2, to
achieve a target standard error of 0.01 for overall accuracy and an
expected user’saccuracy of 0.7. This set of validation data was used to
evaluate the accuracy of both the disturbance time and disturbance
agent. We interpreted all of the validation sample plots using Landsat
time series, high-resolutionimages from Google Earth, Planet Scope
images, hurricane/tornado records, and other auxiliary data such
asdroughtindex and insect survey data. Disturbance detection and
agent classification results were masked during interpretation to
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ensure independence. Agreement was defined as a match in both
disturbance status (disturbed or not) and agent category between the
reference dataand our map within the same calendar year. Stratified
estimators of accuracy and area along with their accompanying stand-
ard errors were produced using an indicator variable formulation®.
We acknowledge that, while increasing the validation sample size can
reduce uncertainty in the accuracy assessment and unbiased area
estimation, our current sample size is sufficient to capture the domi-
nant patterns at the national scale, in accordance with the statistical
‘good practice’ recommendation®’. The rare disturbance classes (for
example, wind/geohazard), which tend to have higher uncertainty,
represent only a small fraction of the total area—particularly within
subregions (Extended Data Table 3)—and do not affect our overall
scientific conclusions.

Disturbance regime metrics

We analysed disturbance regimes across the USA by quantifying their
characteristics at a landscape scale, using a grid of 3,391 hexagonal
grids (2,500 km? or 0.25 Mha) to ensure consistent spatial analysis.
Each disturbance patch was generated through eight-connected
directions based on each annual disturbance agent map (35-yr dis-
turbance agent maps total). We then calculated three key regime
metrics for each disturbance agent within each grid, following the
methodology of ref. 14, in which we calculated disturbance frequency
(units of patches per square kilometre per year), disturbance size
(units of hectare) and disturbance severity (unitless). Disturbance
frequency reflects the rate of disturbance occurrence within a land-
scape, measured as the number of individual disturbance patches
per square kilometre per year. Disturbance size quantifies the area
of each individual patch, which is calculated by the number of dis-
turbed pixels multiplied by pixel size (0.09 ha). Disturbance severity
measures the impact of each individual disturbance patch based on
its disturbance magnitude in Landsat spectral bands derived from
our detection algorithm?*. We normalized severity using quartile per-
centiles of the mean disturbance magnitude (average of all pixel-level
disturbance magnitudes within the same patch) for each disturbance
agent spanning 35 yr and USA-wide to enable comparisons across
different disturbance agents. This resulted in a continuous severity
scale ranging from 1 (low) to 4 (very high), reflecting the severity of
the disturbance (Extended Data Table 4). Finally, to visualize and
analyse the regime indicators, we aggregate the frequency, size and
severity of disturbance patches at the landscape level (hexagonal
grid) using the arithmetic mean for patches intersecting each grid
from1988t02022.

Quantifying disturbance regime shifts

We quantified the temporal trends in both total disturbance foot-
print (nationally) and individual disturbance regime metrics (at
the landscape scale) in the past 35 yr. We used the non-parametric
Theil-Sen regression, which is robust to outliers, to estimate linear
trends, with significance assessed (P < 0.05) via the two-tailed Mann-
Kendall test®*. Recognizing that disturbance regimes often exhibit
nonlinear dynamics, we performed a second-level trend analysis
using a 10-yr rolling window. For each window (from 1997 to 2022),
we estimated the trend in each regime metric (frequency, size or
severity). We then applied Theil-Sen regression to these slopes to
identify whether the trends themselves were accelerating or decel-
erating over time, and with significance assessed (P < 0.05) via the
Man-Kendall test. An accelerating trend was defined as a positive
trend becoming more positive (or a negative trend becoming more
negative), while adecelerating trend indicated a positive trend becom-
ing less positive (or a negative trend becoming less negative). This
two-level approach allowed us not only to capture temporal shifts in
disturbance regimes but also to identify periods of accelerating or
decelerating changes.

Data availability

The open-source data include regions of the Fifth National Climate
Assessment at https://toolkit.climate.gov/NCAS, USGS Landsat
Collection 2 US ARD at https://earthexplorer.usgs.gov, 2012 State
Boundaries of United States and Territories at https://purl.stanford.
edu/vt021tk4894, Public Events Geodatabase 1999-2022 (Model
Ready Events) of LANDFIRE at https://landfire.gov, LCT by https://
www.usgs.gov/centers/western-geographic-science-center/science/
land-cover-trends, Fire Occurrence Dataset 1984-2022 of MTBS at
https://www.mtbs.gov, NLCD 2001-2021 at https://www.usgs.gov/
centers/eros/science/national-land-cover-database, Yearly Seasonality
of GSW version 1.4 at https://global-surface-water.appspot.com, IDS
athttps://www.fs.usda.gov/science-technology/data-tools-products/
fhp-mapping-reporting/detection-surveys, Severe Weather Data-
base at https://www.spc.noaa.gov, International Best Track Archive
for Climate Stewardship at https://www.ncei.noaa.gov/products/
international-best-track-archive, Global Landslide Catalog at https://
gpm.nasa.gov/landslides/projects.html#GLC and Shuttle Radar Topog-
raphy Mission (GL1) 30m DEM version 3 at https://Ipdaac.usgs.gov/
products/srtmgllv003. The1988-2022 disturbance dataset generated
by this study is available via GitHub at https://github.com/gersl/usdist.

Code availability

The disturbance dataset and analyses were produced with custom
code using MATLAB 2022b and Python 3.10 (available via GitHub at
https://github.com/gersl/usdist).
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Extended Data Table 1| Definition of the land disturbance causal agent classes

Classifications

Description

Human-directed

Logging

Human-induced removal of trees from a forested area.

Construction

Lands (either in a vegetated or non-vegetated state) cleared for development (for example,
buildings, mining, solar panels, and golf course) or previously built-up land (also including
concrete parking lot) is intensified with new structures.

Agricultural disturbance

Lands, where agriculture activities are the major cause of the disturbance, such as agriculture
expansion, intensification, and abandonment, as well as changes in management practices

(for example, changing irrigation methods, shifting to different crops, with/without cover crops,
rotation change, and tillage practice changes).

wild

Stress Vegetated lands, where the condition of vegetations (that is, grass, shrub, and tree) is changed to a
less favorable status by natural factors, such as exotic pests or pathogen outbreaks, and drought.

Wind/ geohazard Lands scattered with natural or artificial materials were physically damaged by wind (for example,
hurricanes, tornadoes, storms) and geohazard (for example, landslides, earthquakes, volcanic
eruptions, and tsunamis).

Fire Burned areas due to wildfires or prescribed fires on all land surfaces, such as forests, shrublands,

or grasslands.

Water disturbance

A rising and overflowing of water onto normally dry land (for example, flooding), or the decrease of
water resulting in the conversion of formerly waterlogged areas into dry land. It can occur during
heavy rains, when ocean waves come on shore, when snow melts quickly, when dams or levees
break, or when water diversion structures were changed.

Other

Natural vegetation succession

The land cover types are altered by the process of the structure of a biological community
changing over time (for example, transitioned from grass to shrub, and all the way to forest) with
enough time and adequate recovery speed.

Climate variability

The short-term variations in climate patterns (for example, months, seasons, or years).

Variation in water quality

Variations in the chemical composition, physical characteristics, biological parameters, pH levels,
temperature fluctuations, and source contamination of water.

False-positive change

False-positive change signals induced by clouds, shadows, and change detection algorithms.

Isolated disturbance

Any disturbance less than minimum mapping unit, that is, four Landsat pixels.

Stable

The absence of changes in land cover types and a lack of variations in spectral bands of satellite
remote sensing data over time.

The first disturbance over time was identified if multiple disturbances occurred within one year, and only the disturbance that has caused lasting (>6 months) ecological impacts will be
mapped. This study primarily focuses on mapping and analyzing the seven land disturbance causal agent classes listed in the table, with the exception of the “other” category.
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Extended Data Table 2 | Confusion matrices and accuracy estimates for land disturbance agent map (1988-2022)

Logging Construction  Agricultural Stress Wind/ Fire Water Other
disturbance geohazard disturbance

Confusion matrix of sample counts (Unit: pixel)

Logging 78 0 (0] 2 2 6] 0 18
Construction 1 85 5 0 0] 0 2 7
Agricultural disturbance 1 2 67 3 0 0 4 23

Stress 1 0 2 95 0 6] 0 2
Wind/geohazard 22 3 4 0 56 2 4 9

Fire 0 0 0 0 85 3 9

Water disturbance 0 0 2 1 0 90 7

Other (0] 0 0] 0] 0 (0] 0] 207
Confusion matrix of area proportions (Unit: %)

Logging 0.2108 0.0000 0.0000 0.0054 0.0054 0.0000 0.0000 0.0486
Construction 0.0005 0.0456 0.0027 0.0000 0.0000 0.0000 0.001 0.0038
Agricultural disturbance 0.0023 0.0045 01519 0.0068 0.0000 0.0000 0.0091 0.0521
Stress 0.0008 0.0000 0.0016 0.0746 0.0000 0.0000 0.0000 0.0016
Wind/geohazard 0.0016 0.0002 0.0003 0.0000 0.0042 0.0001 0.0003 0.0007
Fire 0.0000 0.0000 0.0000 0.0020 0.0000 0.0564 0.0020 0.0060
Water disturbance 0.0000 0.0000 0.0014 0.0007 0.0000 0.0000 0.0629 0.0049
Other 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 99.2272
Accuracy estimates

User's accuracy (%) 78.00+8.16 85.00+7.03 67.00+9.26 95.00+4.29 56.00+£9.78 85.00+7.03 90.00+5.91 100.00+0.00
Producer’s accuracy (%) 97.58+2.21 90.56+11.27 96.23+2.33 83.36+10.24 43.44+34.35 99.74+0.36 83.51+10.18 99.88+0.03

The overall accuracy is 99.83+0.03. The columns represent the reference classification, and the rows represent the map classification (strata). The uncertainty + indicates the margin of error
of a 95% confidence interval. The validation sample size was determined for the purpose of evaluating US-wide maps, following the mathematical guidelines outlined in the “good practice”
recommendation®.
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Extended Data Table 3 | Total disturbance area 1988-2022 at national and Fifth National Climate Assessment regions

Region Sample Total disturbance area 1988-2022 of different types (Mha)
size Land Human-directed wild Water
Stibanee Logging Construction  Agricultural Stress Wind/ Fire SEtubagee
disturbance geohazard
us 907 178.50+7.74 58.85+6.15 13.73+£1.99 43.0045.81 24.38+3.13 2.60+2.04 15.40+1.27 20.54+2.74
Northeast 29 3.56+3.35 2.36+2.94 0.90+0.72 ne ne ne ne 0.30+0.44
Midwest 64 7.23+4.01 1.55+1.79 1.62+0.92 2.44+2.39 0.58+1.16 ne ne 1.04+0.95
Southeast 266 62.49+21.32 43.73+15.38 5.45+2.36 3.49+4.14 ne 1.84+1.60 0.75+0.66 7.23+4.03
Northern 10 17.21£6.86 1.41£2.78 0.14+0.28 6.16+3.75 4.00+2.32 ne 1.99+1.35 3.52+1.67
great plains
Southern 152 36.75+14.53 5.65+4.30 3.72+£2.44 13.0446.79 10.38+4.64 0.03+0.05 0.84+0.98 3.11£1.79
great plains
Northwest 72 13.27+£7.09 4.33+3.61 ne 4.38+2.93 ne 0.62+1.24 3.1041.92 0.85+0.82
Southwest 214 37.31+11.91 0.68+1.34 1.65+0.96 12.27+5.95 8.79+3.23 0.00+0.00 8.60+2.86 5.30+2.93

The areas were estimated according to the validation sample in Extended Data Table 2 and the indicator variable formulation of the estimators ®. The uncertainty + indicates the margin of error
of a 95% confidence interval. ne means “not estimated” area due to insufficient sample size (N < 1) in the subregions, reflecting a rare proportion of less than 1%.
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Extended Data Table 4 | Distribution of the frequency, size and severity of land disturbances across the US (1988-2022)

Regime indicator Disturbance Mean Quantiles (%)
1 25 50 75 99
Land disturbance 0.36 0.00 om 0.24 0.49 1.63
Logging 0.09 0.00 0.00 0.01 0.09 071
Construction 0.05 0.00 0.00 0.01 0.05 0.59
Landscape frequency Agricultural disturbance 013 0.00 0.01 0.05 0.15 1.07
(patches per km” per year) Stress 0.01 0.00 0.00 0.00 0.00 012
Wind/geohazard 0.004 0.00 0.00 0.00 0.00 0.08
Fire 0.01 0.00 0.00 0.00 0.00 0.09
Water disturbance 0.07 0.00 0.01 0.02 0.05 1.08
Land disturbance 2.51 0.18 0.45 0.63 1.26 25.56
Logging 3.06 0.36 0.45 0.72 1.80 41.58
Construction 1.24 0.36 0.36 0.54 1.08 11.07
patoh size (ha) Agricultural disturbance 1.64 0.36 0.45 0.63 117 18.09
Stress 16.82 0.36 0.36 0.54 0.90 15.75
Wind/geohazard 2.42 0.36 0.45 0.63 1.08 22.86
Fire 10.72 0.36 0.45 0.81 2.07 110.52
Water disturbance 1.47 0.09 0.36 0.54 0.99 13.68
Land disturbance 0.16 0.05 omn 0.15 0.20 0.38
Logging 0.12 0.05 0.09 on 0.14 0.25
Construction 0.17 0.07 0.12 0.16 0.20 0.40
Agricultural disturbance 019 0.08 014 018 0.23 0.37
Patch magnitude (unitless; 0-1)
Stress 0.09 0.04 0.06 0.08 om 0.21
Wind/geohazard on 0.05 0.08 0.10 013 0.25
Fire 0.10 0.05 0.08 0.10 0.12 0.20
Water disturbance 0.19 0.06 013 017 0.23 0.50
Land disturbance 2.51 1.00 2.00 3.00 3.00 4.00
Logging 2.51 1.00 1.00 3.00 4.00 4.00
Construction 2.50 1.00 2.00 2.00 4.00 4.00
Agricultural disturbance 253 1.00 2.00 3.00 3.00 4.00
Patch severity (unitless; 1-4)
Stress 2.57 1.00 2.00 3.00 4.00 4.00
Wind/geohazard 2.49 1.00 2.00 3.00 3.00 4.00
Fire 2.45 1.00 2.00 2.00 3.00 4.00
Water disturbance 2.49 1.00 1.00 3.00 3.00 4.00

The landscape was represented by 2500-km? hexagonal grid.
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Extended Data Table 5 | Distribution of landscape-level regime trends across the US (1988-2022)

Regime Disturbance Trend Changing rate of trend

Percent of Percent of significant Percent of significantly positive Percent of significantly negative
trends trends trends trends

Positive Negative Positive Negative Accelerated Decelerated Other Accelerated Decelerated Other

Land disturbance 15% 83% 4% 56% 38% 5% 58% 2% 53% 45%
Logging 30% 35% 15% 20% 31% 4% 65% 12% 18% 70%
Construction 12% 65% 5% 46% 16% 10% 75% 3% 32% 65%
Agricultural 4% 83% 1% 69% 43% 13% 43% 0% 75% 24%

Landscape  disturbance

frequency
Stress 19% 1% 1% 6% 25% 5% 70% 3% 32% 65%
Wind/geohazard 1% 3% 10% 2% 27% 4% 69% 0% 47% 53%
Fire 12% 4% 7% 1% 32% 2% 66% 4% 14% 82%
Water disturbance 34% 52% 9% 21% 20% 7% 73% 3% A% 56%
Land disturbance 43% 56% 15% 15% 12% 15% 73% 9% 22% 69%
Logging 36% 32% 17% 12% 22% 7% 7% 5% 27% 68%
Construction 29% 54% 8% 18% 8% 8% 84% 9% 17% 73%
Agricultural 24% 65% 3% 24% 27% 6% 67% 5% 25% 70%

Mean disturbance

patch size
Stress 15% 16% 6% 5% 10% 1% 79% 4% 23% 73%
Wind/geohazard 9% 5% 7% 2% 8% 22% 70% 2% 18% 80%
Fire 8% 9% 3% 2% 15% 7% 78% 2% 30% 68%
Water disturbance 27% 66% 2% 16% 17% 9% 74% 6% 21% 73%
Land disturbance 31% 67% 4% 19% 25% 4% 7% 4% 36% 60%
Logging 33% 34% 1% 10% 28% 2% 70% 5% 29% 66%
Construction 20% 61% 3% 26% 23% 3% 74% 3% 26% %
Agricultural 12% 77% 2% 42% 17% 6% T7% 2% 47% 51%

Maximum  disturbance

patch size
Stress 17% 14% 8% 6% 20% 2% 78% 3% 27% 70%
Wind/geohazard 10% 4% 7% 2% 22% 4% T4% 3% 35% 62%
Fire 10% 7% 5% 2% 28% 2% 70% 2% 18% 80%
Water disturbance 27% 62% 3% 15% 19% 6% 75% 2% 33% 65%
Land disturbance 79% 19% 56% 6% 6% 26% 68% 6% 32% 63%
Logging 50% 14% 33% 4% 3% 27% 70% 1% 20% 70%
Construction 73% 5% 60% 1% 5% 25% % 14% 4% 82%

Mean Agricultural 62% 24% 37% 8% 8% 24% 69% 8% 26% 65%

patch disturbance

severity Stress 17% 7% 9% 2% 7% 13% 80% 10% 9% 81%
Wind/geohazard 1% 2% 8% 1% 2% 29% 69% 10% 0% 90%
Fire 1% 4% 4% 1% 9% 1% 81% 5% 25% 70%
Water disturbance 74% 14% 42% 2% 6% 18% 76% 13% 10% 77%

The landscape was represented by 2500-km? hexagonal grid.
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Corn Corn

Soybean
Soybean
Grass
1st 2nd 3rd
Single cropping Double cropping No-till Tillage
after wheat harvest

Extended Data Fig. 1| Illustration of agricultural disturbance vs cropland agricultural disturbances include agricultural intensification-2" from single
expansion. This place experienced four disturbances in total, including one cropping to double cropping of soybeans, crop type change-3" from soybean
time crop expansion during the study period. The first disturbance is cropland to corn, and agricultural practice change-4™ from no-till to tillage. Plant icons
expansion-1* (land conversion from grassland to cropland). The following three adapted from Flaticon.com.
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Extended Data Fig. 2| Land disturbance severity maps across the US disturbance agents from locations #1-7 of the US include logging, construction,
(1988-2022). a. US-wide map highlighting each pixel’s most recent disturbances agricultural disturbance, stress, wind/geohazard, fire, and water disturbance,
severity. The solid boundaries represent US Fifth National Climate Assessment respectively. The corresponding disturbance agent maps are presented in Fig. 1.
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Extended Data Fig. 3 | Distribution of land disturbance agents across the

US (1988-2022). a. US-wide map depicting the relative proportion of each
disturbance agent’s contribution within 2500-km? hexagonal grids. Colored
points represent agents, with transparency indicating their percentage relative
to the seven mapped agents. The predominant agent (>50%) is highlighted within

eachgrid cell. Solid boundaries delineate US Fifth National Climate Assessment
regions, while dashed boundaries represent state borders. b-h. Area percentage
forindividual disturbance agents, relative to the seven mapped agents, sharing
the samelegend as (a): (b) logging, (c) construction, (d) agricultural disturbance,
(e) stress, (f) wind/geohazard, (g) fire, and (h) water disturbance.
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Extended DataFig. 4 | Land disturbance regimes across the US represented (3) agricultural disturbance, (4) stress, (5) wind/geohazard, (6) fire, and (7)
in2500-km? hexagonal grids (1988-2022). a. Average disturbance patch water disturbance. The black boundaries represent US Fifth National Climate
frequency. b. Average disturbance patch size. c. Average disturbance patch Assessment regions, while the gray boundaries indicate state border. The
severity, scaled from1to 4, where O-1indicates undisturbed to low, 1-2 consistent color scale across all maps facilitates direct comparison of regime
indicates low to medium, 2-3 indicates medium to high, and 3-4 indicates high characteristics across different disturbance agents. Histograms for each map
to very high. Each panel displays eight maps: (1) logging, (2) construction, are provided in Supplementary Fig. 6.
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Extended Data Fig. 5| Map of trend inland disturbance regimes at 2500-km?
hexagonal grids across the US (1988-2022). a. Trend of disturbance patch
frequency. b. Trend of disturbance patch size. c. Trend of disturbance patch
severity. In each panel, (1-7) are the regime trend map of logging, construction,
agricultural disturbance, stress, wind/geohazard, fire, and water disturbance. In
each map, trends are estimated using the Theil-Sen estimator, and their statistical
significanceis determined by the two-tailed Mann-Kendall test (p < 0.05),

where symbols indicate significantly accelerated (+) and decelerated (-) trends,
while dots () denote other significant (for example, increasing or decreasing)

trends. Each map includes density plots in the lower-left corner, depicting

the distribution of trend magnitudes for landscapes with significant trends,
categorized as accelerated, decelerated, and other significant trends (from top
to bottom). The number presents the number of hexagonal grids with significant
trend. The solid boundaries represent US Fifth National Climate Assessment
regions, while the dashed boundaries indicate state border. The consistent color
scale across all maps facilitates direct comparison of disturbance regime shift
patterns. All general land disturbance agent regime trends are provided in Fig. 4.
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