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A shift from human-directed to undirected 
wild land disturbances in the USA
 

Shi Qiu    1  , Zhe Zhu    1  , Xiucheng Yang    1, Curtis E. Woodcock2, 
Robert T. Fahey1,3, Stephen Stehman    4, Yingtong Zhang    2, Mari Cullerton1, 
Ashley Grinstead1, Falu Hong    1, Kexin Song1, Ji Won Suh1, Tian Li1, Wei Ren    1 & 
Ramakrishna R. Nemani5

Land disturbances are fundamental drivers of terrestrial ecosystem 
dynamics, influencing biodiversity, carbon cycling and land–atmosphere 
interactions. An understanding of changes in their regimes is crucial for 
predicting future ecosystem trajectories and guiding sustainable land 
management. Here we leverage the long-term record of Landsat imagery to 
create high-resolution (30 m) maps of annual land disturbance agents across 
the contiguous USA from 1988 to 2022. We find that 178.50 million hectares of 
US land have been cumulatively disturbed over this period. Human-directed 
disturbances account for 65% of this total, driven by logging, agricultural 
disturbance and construction. Our analysis reveals a widespread decline in 
human-directed disturbances (−59.21 kha yr−1) alongside a countervailing 
surge (20.31 kha yr−1) in less controllable, undirected ‘wild’ disturbances 
(fire, wind/geohazard and vegetation stress), which account for 24% of 
the total disturbed area. The disturbance regime shift analysis finds that 
although human-directed disturbances are now declining in frequency, wild 
disturbance frequencies are increasing at an accelerated pace. The patch 
size of human-directed disturbances is shrinking, while the wild disturbance 
patch size shows both expanding and contracting trends. Disturbance 
severity is rising across most of the USA. Our findings highlight an urgent 
need to understand and adapt to these diverging disturbance trajectories, as 
they will profoundly shape the future of US landscapes.

Land disturbances are a primary architect of Earth’s terrestrial eco-
systems, shaping their patterns, processes and resilience. These dis-
turbance events affect the natural world and human societies through 
effects on resource availability, natural hazards and climate change1. 
Historically, two distinct narratives have shaped our understanding 
of disturbance. One describes nature’s raw power: wildfires ignited by 
lightning; hurricanes reshaping coastlines; pest outbreaks transform-
ing forests. These natural disturbances have been agents of change 

for millennia, integral to the evolution and dynamics of ecosystems2. 
The other narrative chronicles the rise of human impact. Over the past 
century, anthropogenic disturbances such as logging, agricultural 
disturbance and construction have intensified, leaving a pervasive 
footprint on Earth’s ecosystems3–7.

However, these two tales are now intertwined. Human actions 
are altering natural disturbance regimes, blurring the lines between 
‘natural’ and ‘anthropogenic’. This blurring is driven not only by direct 
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reconstruction of Chicago O’Hare International Airport (Fig. 1c), 
crop rotation between corn, cotton and wheat in Texas (Fig. 1d), 2011 
severe drought in the southern USA (Fig. 1e), 2017 Irma hurricane in 
Florida (Fig. 1f), 2020 August Complex fire in California (Fig. 1g) and 
water disturbance in Malheur Lake (Fig. 1h). Our maps were rigorously 
validated using a stratified random sample of 907 plots (30 m × 30 m), 
and the estimated user’s and producer’s accuracies exceeded 75% for 
most disturbance agents (Extended Data Table 2). Accuracies for wind/
geohazard were lower (about 50%), but their limited extent had mini-
mal impact on overall map accuracy (>99%). Mapped stress captures 
spectrally detectable events such as moderate-to-severe drought and 
major pest outbreaks, although more subtle physiological stress may 
be underestimated.

Disturbance footprint
Across the USA (1988–2022), 18% of the land was disturbed at least 
once, but the cumulative area affected by repeated disturbances 
totalled 178.50 million hectares (Mha; 95% confidence interval (CI) 
170.76–186.24; Extended Data Table 3), equivalent to roughly one 
third of the nation’s land surface. Human-directed disturbances were 
the primary driver (65% of the total disturbed area). Logging was the 
largest component (58.85 Mha; 95% CI 52.70–65.00), followed by agri-
cultural disturbance (43.00 Mha; 95% CI 37.19–48.81) and construc-
tion (13.73 Mha; 95% CI 11.74–15.72). Wild disturbances accounted  
for a growing proportion (24%), dominated by fire (15.40 Mha 
(95% CI 14.13–16.67)) and stress (24.38 Mha (95% CI 21.25–27.51)),  
while wind/geohazard contributed a smaller share (2.6 Mha; 
95% CI 0.56–4.64; Extended Data Table 3). Water disturbances 
accounted for the remaining 11% (20.54 Mha (95% CI 17.80–23.28)).

The disturbance footprint is highly variable (Extended Data Fig. 3 
and Extended Data Table 3). Regionally, the Southeast was the most 
heavily disturbed, accounting for 34% (62.49 Mha (95% CI 41.17–83.81)) 
of the total disturbed area. This is probably a reflection of the region’s 
prominent logging industry25 as well as its vulnerability to frequent hur-
ricanes26. By contrast, the Northeast experienced the least disturbance 
(3.56 Mha (95% CI 0.21–6.91)).

We also describe geographic patterns of disturbance by illustrat-
ing variation across latitudinal and longitudinal gradients (Fig. 1i,j). 
Disturbances are more extensive in southern latitudes, with more 
than 75% of the total disturbed area concentrated in the Southeast, 
Southern Great Plains and Southwest (Extended Data Table 3). While 
these regions show a mix of human-driven disturbances such as log-
ging and construction, they are also vulnerable to the power of wild 
forces, such as stress, much of which is probably associated with 
drought, and wind/geohazard (Fig. 1j). Geographic patterns further 
highlight a concentration of logging and construction in the East 
(Fig. 1i). Wind/geohazard disturbances, particularly hurricanes, are 
clustered along the southeastern coast, while fires are more common 
in the West. Water and agricultural disturbances show peaks in the 
central regions.

Diverging human-directed and wild  
disturbance trends
Temporal trend analysis reveals two contrasting trajectories 
(Fig. 2). Overall, total disturbed area declined annually (−47.73 kha yr−1 
(95% CI −20.42 to −81.44)), driven by reductions in logging 
(−8.14 kha yr−1 (95% CI −13.86 to −2.97)), construction (−6.72 kha yr−1 
(95% CI −9.30 to −3.90)), agricultural disturbance (−43.52 kha yr−1 
(95% CI −62.84 to −26.34)) and water disturbance (−6.20 kha yr−1 
(95% CI −10.12 to −1.90)). This decrease of human-directed disturbance 
areas (−59.21 kha yr−1 (95% CI −80.90 to −43.03)) probably reflects policy 
changes, technological advancements in agriculture and forestry, 
and economic shifts. The history of US agricultural policy is a prime 
example. While policies in the 1980s aimed at boosting production and 
exports, leading to more intensive agricultural activities and potential 

interventions such as prescribed burning or dam construction but also 
by the indirect effects of anthropogenic climate change8, which could 
amplify the frequency, size and severity of many natural disturbances. 
For example, rising global temperatures are contributing to more 
intense hurricanes9, prolonged droughts10 and expanded ranges of 
forest pests11. These changes, in turn, are contributing to a surge in 
what we term undirected ‘wild’ disturbances—those agents of change, 
including fire, wind/geohazard and stress, that can be associated with 
either natural or anthropogenic sources, but are largely not explicitly 
directed by human actions. Water disturbance is associated with both 
direct human interventions (for example, dams and reservoirs) and 
natural events (for example, precipitation and sea level rise) and is thus 
treated as a distinct category, recognizing its dual drivers.

This convergence of intensifying human impacts and less con-
trollable wild disturbances creates a complex and rapidly changing 
disturbance landscape, making it crucial to understand not just indi-
vidual disturbance events, but also the broader context of disturbance 
regimes—the cumulative effect of multiple disturbances across space 
and time12. Disturbance regimes, characterized by their frequency, size 
and severity, profoundly influence ecosystem structure and function, 
shaping their response to change13.

However, mapping and quantifying disturbance regimes at the 
needed scale and resolution, particularly for different causal agents, 
remains a challenge14. While research has illuminated shifts in specific 
disturbance agents and their potential consequences15–18, a compre-
hensive understanding of these shifts across diverse drivers and land 
surface types remains elusive19. This gap is exacerbated by limitations 
in existing disturbance datasets20–23, which often lack the spatial detail, 
temporal depth and agent specificity needed to capture the complexity 
of US disturbance regimes.

Here we define land disturbance as any relatively discrete event 
that substantially alters the biophysical state of the land surface, 
including both natural and anthropogenic drivers13,24. Our approach 
focuses on capturing detectable deviations from baseline conditions 
or established patterns using satellite observations. Consequently, our 
analysis includes a broad spectrum of events that fit this definition, 
such as changes in agricultural practices or constructions in already 
developed areas, all of which represent detectable changes relevant 
to landscape dynamics. To investigate these dynamics across the con-
tiguous USA, we created a 35-yr (1988–2022) land disturbance dataset 
using dense satellite time series, object-based analysis and machine 
learning (Fig. 1). This dataset allows us to quantify not only the spatial 
extent of different disturbance agents but also shifting disturbance 
regimes. It is useful to contrast our focus on land disturbance with the 
concept of land cover and land use change (LCLUC). LCLUC primarily 
describes the outcome of change, measured in terms of cover types or 
land uses (for example, shift from forest to cropland), whereas land 
disturbance is the driver19. Disturbances frequently occur without 
necessarily altering the LCLUC category (for example, forest stress 
from drought or pests, shifts in agricultural intensity or fallowing 
cycles)19, while LCLUC can sometimes occur without a discrete distur-
bance event (for example, gradual forest regeneration). For example, 
agricultural expansion may occur once at a given location, but agri-
cultural disturbance can recur through abandonment, intensification 
or altered management practices (Extended Data Fig. 1). Our analysis 
addresses seven major disturbance agents: logging; construction; 
vegetation stress; agricultural disturbance; wind/geohazard; water 
disturbance; and fire (Extended Data Table 1).

High-resolution land disturbance agent maps
We leveraged 13.45 million Landsat images to generate a 30-m resolu-
tion dataset of annual land disturbance maps across the USA from 
1988 to 2022 (Methods), capturing the timing, causal agent and sever-
ity (Fig. 1 and Extended Data Fig. 2). This dataset identifies diverse 
disturbances, such as logging in Arkansas (Fig. 1b), expansion and 
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environmental impacts, subsequent Farm Bills emphasized environ-
mental compliance, renewable energy and climate-smart agricultural 
practices, potentially contributing to the decline in agricultural distur-
bance we observed. Similarly, the US Lacey Act, amended in 2008 to 
prevent illegal timber harvesting, probably played a role in reducing 
logging disturbances. Economically, the 2008 financial crisis clearly 
affected construction, which has not returned to pre-crisis levels 
despite recovery (Fig. 2c).

By contrast, we see a significant increase in wild disturbance areas 
(20.31 kha yr−1 (95% CI 1.97–35.65); Fig. 2a), with fire, stress and wind/
geohazard exhibiting increasing trends (Fig. 2e–g). This rise is probably 

driven by climate change, altered fire regimes27 and other environmen-
tal factors. The increase in fire (11.24 kha yr−1 (95% CI 3.90–23.54)) is 
particularly pronounced, reflecting the growing influence of climate 
change and its interaction with drought, pest outbreaks and historical 
fire suppression on wildfire activity across the western USA, coupled 
with evolving fire management strategies28. Stress-related disturbances 
show considerable interannual variability, with peaks linked to major 
drought events (for example, 2012)29, and exhibit a non-statistically 
significant, increasing trend overall (0.61 kha yr−1 (95% CI −3.96–10.64), 
P = 0.82). Similarly, wind/geohazard disturbances have increased 
(0.95 kha yr−1 (95% CI 0.00–1.64), P = 0.06), potentially reflecting the 
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Fig. 1 | Land disturbance agent maps across the USA (1988–2022). a, USA-wide 
map highlighting each pixel’s most recent disturbance agent, revealing the 
spatial distribution and diversity of disturbances at 30-m resolution. The solid 
boundaries represent US Fifth National Climate Assessment regions, while the 
dashed boundaries indicate state borders. b–h, Examples of disturbance  
agents from locations 1–7 of the USA include human-directed disturbances 
(logging (b), construction (c), agricultural disturbance (dist.; d)), wild 
disturbances (stress (e), wind/geohazard (f), fire (g)) and water disturbance (h). 
The corresponding disturbance severity maps are presented in Extended  

Data Fig. 2. All maps are shown in Albers equal-area conic projection.  
i,j, Longitudinal (i) and latitudinal (j) profiles overlaid on this projection of 
stacked disturbance areas. Area statistics (Mha) are calculated at 15-km intervals 
and stacked chronologically from 1988 to 2022 for different disturbance agents. 
All panels share the same legend: brighter colour curves represent earlier 
disturbance years (towards 1988), while darker colours indicate more recent 
years (towards 2022). Full-resolution maps are available at the interactive 
explorer https://ee-gers.projects.earthengine.app/view/us-disturbance.
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rise in extreme weather30. These contrasting trends underscore a major 
shift in the drivers of land disturbance across the USA.

Land disturbance regimes
US disturbance regimes vary widely in frequency, size and severity 
(Fig. 3). The annual average frequency of land disturbance at the 
landscape scale (hexagonal grid) is 0.36 patches per square kilometre 
per year, with the top 1% reaching 1.63 patches per square kilometre 
(Extended Data Table 4). Hotspots of intense, recurring disturbance (>1 
patch per square kilometre per year) emerge in agricultural regions of 
California, Washington State and the Southern Great Plains, driven by 
dynamic agricultural systems (Extended Data Fig. 4a (3)). The Southeast 
also experienced a high frequency of disturbances, primarily from log-
ging, wind/geohazard (for example, hurricanes) and water disturbance 
(Extended Data Fig. 4a (1, 5 and 7)). Across the USA, human-directed 
disturbances and water disturbance are generally more frequent than 
the other three wild disturbance categories (Extended Data Fig. 4a and 
Extended Data Table 4). However, in parts of the Northeast, Midwest 

and Northwest, lower disturbance frequencies point to relatively more 
stable ecosystems (Fig. 3a).

The size of disturbance patches across the USA reveals a large 
contrast between human-directed and wild disturbance (Fig. 3b). 
While the average disturbance size spans 2.51 hectares (ha), wild dis-
turbances—notably stress (16.82 ha) and fire (10.72 ha)—carve out sub-
stantially larger areas per event than human-directed disturbances such 
as logging (3.06 ha) or construction (1.24 ha; Extended Data Table 4), 
a pattern particularly pronounced in the western USA. While smaller 
disturbance patches dominate the East, considerable variation exists 
(Fig. 3b). For example, logging and wind/geohazard (for example, hur-
ricanes) contribute to larger patch sizes in the Southeast, reflecting 
the region’s forest management practices and susceptibility to major 
storms (Extended Data Fig. 4b (1 and 5)).

The severity of land disturbance, ranging from 1 (low) to 4 (very 
high), varies markedly (Fig. 3c). The average severity is 2.51 (between 
medium to high; Extended Data Table 4), with high-average-severity 
disturbance hotspots in the central regions where multiple agents 
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converge (Extended Data Fig. 4c (1–4 and 6)). Fire severity is espe-
cially prominent in the South Great Plains, Midwest and Southeast 
(Extended Data Fig. 4c (6)). Wind/geohazard also contributes to 
high severity in the central regions and along the hurricane-prone 
eastern coast (Extended Data Fig. 4c (5)). Higher-severity water dis-
turbances are prevalent in most regions except for the Southeast  
(Extended Data Fig. 4c (7))

Shifting and diverging disturbance regime
Our analysis reveals a dynamic landscape of disturbance regimes 
(Fig. 4). While overall disturbance frequency declined between 1988 and 
2022 (56% of hexagonal grids exhibiting significantly negative trends 
and 4% showing significantly positive trends; Fig. 4a and Extended 
Data Table 5), the story is far from uniform. The overall decline is pri-
marily driven by reduction in human-directed and water disturbances 
(Extended Data Table 5). This pattern suggests that policy changes 
aimed at promoting more sustainable land management practices, 
as well as technological advancements and economic shifts, may be 
having a measurable effect. Most of these declining trends are also 
decelerating (see density plot in Fig. 4a), further hinting at a potential 
stabilization of human-directed and water disturbance regimes in some 
regions. However, this trend is counterbalanced by a rapid surge in wild 
disturbance. Wind/geohazard, stress and fire all show accelerating 
increases in disturbance frequency, with hotspots concentrated in 
the Midwest and West (Extended Data Fig. 5a (4–6)). This accelerating 
rise in wild forces, particularly fire, points to the growing influence 
of less controllable forces, posing a challenge for land management 
and conservation. Wind/geohazard disturbances, particularly hurri-
canes, exhibit the most pronounced increases in frequency along the 
Southeast coast, underscoring the region’s vulnerability to increasingly 
frequent and intense storms.

The size of disturbance patches also exhibits non-stationarity, 
with 30% of hexagonal grids showing statistically significant temporal 
trends. About half of these grids showed positive trends while the other 
half showed negative trends (Fig. 4b and Extended Data Table 5). Larger 
disturbance patches are becoming more common in the Southeast, 
largely due to expanding logging operations and the impact of wind/
geohazard, especially hurricanes (Extended Data Fig. 5b (5)). By con-
trast, the size of anthropogenic disturbance patches associated with 
construction and agricultural disturbance is declining in many hex-
agonal grids (Extended Data Fig. 5b (2 and 3)). This potentially reflects 

trends towards intensification and more small-scale land use practices 
in those areas. However, their patch size is increasing in parts of the cen-
tral USA due to new and large-scale developments. Wild disturbances 
(Extended Data Fig. 5b (4–6)), however, show a mixed pattern, with 
both increasing and decreasing patch sizes evident across different 
regions. The maximum patch size (per hexagonal grid and per year) of 
all three wild disturbance categories has generally expanded, reflecting 
the growing impact of extreme events (Extended Data Table 5). While 
most significant trends in patch size did not show clear acceleration or 
deceleration, a key pattern emerged. Decelerated trends, particularly 
those showing a decrease in patch size, were more prevalent than accel-
erated trends, suggesting a potential slowdown in both the expansion 
and contraction of disturbance patches across the USA.

The severity of land disturbance generally shows an upward 
trend (Fig. 4c), with 56% of hexagonal grids experiencing a significant 
increase (Extended Data Table 5). This increase is evident for most dis-
turbance agents, suggesting a trend towards more intense disturbance 
events with potentially greater ecological consequences. However, a 
closer examination reveals that while severity is increasing, the pace 
of that increase is slowing down in many hexagonal grids and for most 
of the disturbance agents (Extended Data Fig. 5c (1–7)), indicating a 
potential future stabilization.

Discussion
Our results reveal the changing impact of human activities on US 
landscapes, making a shift from direct human disturbance towards 
indirect influence on overall disturbance regimes. Human-directed 
disturbances, such as logging, agricultural disturbance and construc-
tion, have dominated the past few decades, collectively accounting for 
nearly two thirds of the total disturbed area (Extended Data Table 3). 
However, we document a substantial decline in their frequency and 
extent, encompassing a wider range of land use modifications than 
previously documented31,32. For instance, the observed decline in 
agricultural disturbance probably reflects a combination of reduced 
expansion (as noted in earlier study32) and shifts away from certain 
agricultural practices, such as changes in irrigation, tillage or inten-
sification patterns. Similarly, the decline in construction appears to 
reflect not only economic cycles but also potential shifts in develop-
ment patterns.

This general decline in the USA contrasts with trends observed 
in other regions, such as rising forest harvest in Europe33, rapid 
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urbanization in China34, and agricultural expansion in Africa and 
South America35. These patterns probably reflect a combination of 
policy or practice changes (for example, sustainable forestry prac-
tices36 and more emphasis on land conservation), technological 
advances in land management (for example, precision agriculture) 
and shifts in economic conditions in the USA, as well as outsourcing 
of resource extraction to other parts of the world. The USA, while 
still a major consumer of resources, has increasingly shifted the 

environmental burden of production to developing nations. This shift 
in resource production, while potentially contributing to reduced 
human-directed disturbances within the USA, raises important ques-
tions about the global distribution of environmental impacts and the 
equity of resource consumption.

This decline in direct human impact on the land does not signal 
a return to a pristine past. In some regions, such as the Northeast, 
where human impacts have been extensive for centuries, the decline 
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Fig. 4 | Land disturbance regime shifts across the USA in 2,500-km2 hexagonal 
grids (1988–2022). a, Map of disturbance frequency trend. b, Map of disturbance 
size trend. c, Map of disturbance severity trend. Trends are estimated using the 
Theil–Sen estimator, and their statistical significance is determined by the two-
tailed Mann–Kendall test (P < 0.05). Symbols indicate significantly accelerated 
(+) and decelerated (\) trends, while dots denote other significant (increasing 
or decreasing) trends. Each map features density plots based on landscapes 
with significant trends, illustrating the distribution of trend magnitudes in 

accelerated, decelerated and other significant trends. The number (N) represents 
the number of hexagonal grids with significant trend. All maps are shown in 
Albers equal-area conic projection. The solid boundaries represent US Fifth 
National Climate Assessment regions, while the dashed boundaries indicate state 
borders. The consistent colour scale across all maps facilitates direct comparison 
of disturbance regime shift patterns. Each individual disturbance agent 
regime trend for logging, construction, agricultural disturbance, stress, wind/
geohazard, fire and water disturbance is provided in Extended Data Fig. 5.
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in disturbance we observe might simply reflect the fact that these 
landscapes have already been heavily modified, leaving less oppor-
tunity for new, large-scale disturbance. Yet, even as direct human 
land modification decreases, challenges emerge from indirect human 
influences that appear to be altering wild disturbance regimes. For 
instance, anthropogenic climate change could be one factor influenc-
ing the wild disturbances that reshape our ecosystems, potentially 
altering their frequency, size or severity through indirect mechanisms 
that are difficult to quantify directly. Rising global temperatures, a 
key manifestation of climate change, are associated with conditions 
potentially favouring more intense hurricanes, prolonged droughts 
and expanded ranges of forest pests, all of which can trigger or worsen 
wild force disturbances. Additionally, human activities are directly 
responsible for ignitions in many wildfires, whether through acciden-
tal or intentional means37–39. These indirect anthropogenic influences 
are challenging to quantify directly using satellite data, which primar-
ily capture the proximate causes of disturbance19. Future research 
should prioritize integrating our remote sensing analysis with climate 
models, socioeconomic data and other sources, such as social media 
records of human-caused fires, to better disentangle the complex web 
of human influences.

This shift towards indirect human impacts is clearly reflected in 
the accelerating surge of wild forces across the USA. Our findings, 
based on a comprehensive, continental-scale analysis of 35 yr of Land-
sat data, provide a uniquely detailed view of this transformation. The 
western and central USA, regions already experiencing rising wildfire 
activity and widespread drought- and pest-induced stress, are experi-
encing the most marked increase in wild disturbances. While previous 
studies have documented the larger footprint and increased frequency 
of individual wild disturbances such as fire and stress27,40,41, our analysis 
reveals a more comprehensive picture, highlighting several distinct 
patterns of accelerating or decelerating change across all wild agents 
and regime characteristics. For example, the frequency and patch size 
of wild disturbances are increasing at an accelerated rate across most 
regions, whereas their severity, while still increasing overall, is rising 
at a decelerated pace (Fig. 4). This suggests a potential shift towards 
more frequent, larger and potentially more impactful wild disturbance 
events in the future. These findings underscore the growing influence 
of wild disturbances on US landscapes, signalling a future of greater 
unpredictability.

Conclusion
The USA is entering a new era of disturbance. While our analysis sug-
gests that human impacts are declining in some areas, this trend is 
accompanied by the accelerating surge of wild disturbances. Fire, stress 
and wind/geohazard are reshaping US ecosystems, driven by climate 
and other environmental changes, often amplified by past human 
actions. The escalating frequency, size and severity of these events 
pose profound challenges to landscape resilience and sustainability. 
We are moving from an era of relative human control to one where wild 
forces exert increasing influence, suggesting a more unpredictable and 
dynamic future. Traditional approaches to land management, focused 
on suppression and control, are proving increasingly ineffective42. Our 
high-resolution, multi-decadal dataset offers a critical lens to view this 
transformation, equipping scientists, policymakers and land managers 
with the knowledge to develop adaptive, resilience-based strategies. 
The challenge now is to transform our relationship with disturbance 
from one of control to one of coexistence.
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Methods
We leveraged long-term historical Landsat data and advanced time 
series analysis algorithms to map detectable land disturbances and 
their associated agents across the USA from 1988 to 2022. The map pro-
duction includes Landsat image compositing, training data collection, 
disturbance detection and agent classification. On the basis of a strati-
fied random sample, we conducted accuracy assessment, unbiased area 
estimation and uncertainty quantification for the resulting product. 
Finally, we quantified land disturbance regimes and regime shifts in 
frequency, size and severity to provide a comprehensive understand-
ing of land disturbance dynamics across the USA.

Data
Landsat data. We analyse 13.45 million Landsat images (cloud cover-
age ≤ 80%) from the Landsat Collection 2 Analysis Ready Data (ARD) 
archive, encompassing the period from 1982 to 2023 (Supplementary 
Fig. 1). Those images were provided in 5,000 × 5,000 30-m pixel tiles 
(150 km × 150 km), using the Albers equal-area conic projection. The 
archive included data from Landsat 4-5 Thematic Mapper, Landsat 7 
Enhanced Thematic Mapper Plus and Landsat 8-9 Operational Land 
Imager/Thermal Infrared Sensor. The ARD provides consistently pro-
cessed surface reflectance data, facilitating analysis across different 
sensors and time periods. We utilized the surface reflectance of several 
key spectral bands, including blue, green, red, near-infrared and two 
short-wave infrared (SWIR) bands. In addition to surface reflectance, we 
incorporated brightness temperature data from the thermal infrared 
band, which is sensitive to land surface temperature and can provide 
valuable information about disturbance events, such as fire. The qual-
ity assessment band, generated using the Function of mask (Fmask) 
algorithm43, enabled masking of pixels affected by clouds, cloud shad-
ows and snow/ice. To minimize the effects of bidirectional reflectance 
distribution function, we selected observations from a single orbit path 
with the smallest view zenith angles19. All Landsat data were composited 
into 32-day regular time series observations to eliminate the variation 
in temporal density of the observation data (Supplementary Fig. 2), 
using an adaptive compositing method44 (Supplementary Methods 1).

Training data. Creating accurate land disturbance maps requires 
extensive and representative training data. We compiled a compre-
hensive training dataset by integrating multiple sources (for example, 
existing disturbance reference datasets, survey data, land cover maps 
and visual interpretation of high-resolution imagery), each providing 
unique insights into the diverse disturbance agents: Landscape Fire 
and Resource Management Planning Tools (LANDFIRE)45 for logging, 
construction, stress and wind/geohazard; Land Cover Trends (LCT)46 
for logging, agricultural disturbance and construction; Monitoring 
Trends in Burn Severity (MTBS)47 for fire; Insect and Disease Survey 
(IDS)48 for stress-related disturbances; Global Surface Water (GSW)49 
for water disturbance; and the National Land Cover Database (NLCD)50 
for providing the land cover and land use background and disturbance 
training data sample refinement. To ensure high training data quality, 
we selected only disturbance patches detected by our algorithm (see 
the section entitled Land disturbance detection) that overlapped 
with the corresponding potential agent reference maps for over 50% 
of the pixels within each patch. When multiple agents were present in 
a simple disturbance patch, a majority rule was applied. Wind/geo-
hazard samples were carefully interpreted using event reports (for 
example, hurricane, tornado and landslide) from the National Oce-
anic and Atmospheric Administration Severe Weather Database51, 
the International Best Track Archive for Climate Stewardship52 and 
the NASA (National Aeronautics and Space Administration) Global 
Landslide Catalog53 to guarantee the training data quality. Details are 
documented in Supplementary Methods 2.

While LCLUC information from datasets such as LCT is valuable 
for identifying certain disturbance types (for example, conversion 

events such as deforestation, agriculture expansion or urbanization), 
this made up only part of our comprehensive training data. The NLCD 
provided essential land cover context for verifying samples (for exam-
ple, ensuring construction occurred in non-forest areas, agricultural 
disturbance on farmland, stress within vegetation), but was not a direct 
source of disturbance training data. Our primary approach involved lev-
eraging disturbance-specific datasets (for example, MTBS for fire, IDS 
for stress) substantially augmented by extensive visual interpretation. 
We visually analysed more than 60,000 sample patches, referencing 
preliminary disturbance maps, high-resolution Google Earth imagery 
and other relevant data (such as drought and pest maps), specifically 
to improve representation of agents less covered by existing data-
sets, including construction, stress and wind/geohazard. The spatial 
distribution of these combined training sample patches is shown in 
Supplementary Fig. 3.

Land disturbance detection. The foundation of our land disturbance 
mapping approach is the COntinuous monitoring of Land Disturbance 
(COLD) algorithm24. COLD, specifically designed for detecting distur-
bances from Landsat time series, offers several advantages over tradi-
tional change detection methods. First, it models the full Landsat time 
series, capturing both seasonal and interannual variability in surface 
reflectance. This allows for the detection of subtle disturbances that 
may be missed by methods that compare only two or a few images. 
Second, it provides information on the timing, magnitude and spectral 
characteristics of disturbances, providing valuable insights into the 
nature and potential drivers of these events.

COLD operates by fitting a harmonic time series model (equa-
tion (1)) to each Landsat pixel, using the least absolute shrinkage and 
selection operator54 to select the most informative harmonic com-
ponents (Supplementary Fig. 7). The model estimates expected spec-
tral values for each observation date based on the historical time 
series. Stable pixels are those where observed values remain within 
the expected range of variability defined by the model. Disturbances 
are identified when six consecutive reflectance differences (Δρ) 
between observations (ρ) and model predictions ( ρ̂) exceed a prede-
fined threshold24. In this study, we used a threshold of 0.95 to slightly 
relax the detection criterion and reduce omission errors. This thresh-
old indicates a statistically significant deviation from the established 
spectral pattern for that pixel. In COLD, only five Landsat spectral 
bands—green, red, near-infrared, SWIR1 and SWIR2—were used to 
detect disturbance, but all other bands were used for estimating their 
specific time series models that include rich temporal-spectral infor-
mation. In this way, COLD can provide the disturbance location at the 
Landsat pixel, the disturbance time at the Landsat observation and 
the corresponding disturbance magnitude. The disturbance magni-
tude was calculated as the square root of the sum of the squared 
per-band change magnitude, which is calculated by the median dif-
ferences (excluding the blue and thermal infrared bands) of the con-
secutive reflectance differences at the time of a detected break24. 
Disturbance magnitude is unitless, with a range of 0–1. To optimize 
computational efficiency, we reduced the model updating frequency 
from every new observation to every 4% of the number of observa-
tions used in previous model updating24. This can greatly (>60%) 
reduce the computation time and achieve similar detection accura-
cies. Although Landsat data from 1982 to 2023 were utilized (Sup-
plementary Fig. 2), we focused on disturbance detection maps 
between 1988 and 2022. This is because data before 1988 were used 
to initialize time series models, and data after 2022 were used to 
confirm disturbances at the end of the time series. We excluded 
permanent water pixels from the GSW dataset49 to focus exclusively 
on land-related disturbances.

ρ̂i,t = a0,i +
3
∑
k=1

{ak,i cos (
2πk
T

t) + bk,i sin (
2πk
T

t)} + c1,it (1)
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disturbance object. Then, we calculated 12 spatial predictor variables 
to describe the spatial characteristics of the disturbance object, such 
as size, form and shape, using FRAGSTATS—a spatial pattern analysis 
program for quantifying landscape structure59. In addition, we com-
puted the elevation range for each disturbance object as one of the 
predictor variables as this could also relate to the type of disturbance 
agent. For example, a geohazard caused by landslide would be more 
likely to occur in regions with large elevation differences.

Classification model and strategy. We used a random forest model60 
with 100 decision trees to balance computational efficiency and 
classification accuracy. The training data of the random forest are 
pixel-based, instead of at the object-level, as this can provide many 
more training sample units with large variations of spectral informa-
tion. For training pixels within the same disturbance patch, they will 
share the same values in the patch-based variables (Supplementary 
Table 2). Ideally, the number of training sample units for each class is 
based on its area proportion with some limits on dominant and rare 
classes61. However, there is no way to know the area proportion for 
each class before we have a map of them. To solve this chicken-and-egg 
dilemma, we used an iterative procedure to optimize training data 
selection (Supplementary Methods 3). First, we created a preliminary 
disturbance agent classification map using an equal distribution of 
pixel-based training data. Then, using the class proportions derived 
from this preliminary map (with a minimum of 3% and a maximum of 
40% per class)61, we extracted a proportionally distributed dataset to 
train a new random forest model which was used to generate the final 
land disturbance agent map. This proportional sampling strategy, 
evaluated using five diverse regions across the USA (Supplementary 
Fig. 4), outperformed equal sampling and achieved a stable accuracy 
using 10,000 training pixels (Supplementary Fig. 5).

Refining classification map. We conducted a rigorous manual refine-
ment process to refine the initial USA-wide disturbance agent maps 
derived from open-source training data. We identified areas of classi-
fication error in the preliminary maps, such as confusion between con-
struction and agricultural disturbance, stress (for example, drought) 
and climate variability, water disturbance and agricultural disturbance 
(for example, irrigation), and wind/geohazard and logging. At these 
locations, we visually interpreted high-resolution imagery and added 
over 60,000 manually refined training samples to update the random 
forest models (Supplementary Fig. 3). This iterative refinement process 
was essential for achieving high classification accuracy and ensuring 
the reliability of our final disturbance agent maps. These refined sam-
ples were also incorporated into the training of final USA-wide maps 
in cases where the pre-train models were having issues.

Accuracy assessment and unbiased area estimation
We used the three most widely used metrics, including overall accu-
racy, user’s accuracy and producer’s accuracy, and followed the ‘good 
practice’ recommendation62. We used an unbiased estimator of area 
based on the reference sample data and used the map to improve 
precision of the area estimates. We selected a set of stratified ran-
dom validation samples using land disturbance agent types as the 
strata. In this stratification, each sample plot represents a location 
on the ground (30 m) and a time (calendar year). We selected 907 
sample plots across strata, as detailed in Extended Data Table 2, to 
achieve a target standard error of 0.01 for overall accuracy and an 
expected user’s accuracy of 0.7. This set of validation data was used to 
evaluate the accuracy of both the disturbance time and disturbance 
agent. We interpreted all of the validation sample plots using Landsat 
time series, high-resolution images from Google Earth, Planet Scope 
images, hurricane/tornado records, and other auxiliary data such 
as drought index and insect survey data. Disturbance detection and 
agent classification results were masked during interpretation to 

where t represents the Julian date, i represents the ith Landsat spectral 
band, k represents the temporal frequency of different harmonic com-
ponents (k = 1, 2 and 3), T represents the average number of days per 
year (T = 365.25), a0,i is the coefficient for capturing the overall value 
for the ith Landsat spectral band, ak,i and bk,i are coefficients for captur-
ing the intra-annual change for the ith Landsat spectral band, c1,i   
is the coefficient for capturing the interannual change for the ith  
Landsat spectral band, and ρ̂i,t  is the surface reflectance for the ith 
Landsat spectral band at Julian date t based on model prediction.

Land disturbance agent classification
To attribute the agent of land disturbance identified by COLD, in this 
study, we developed an object-based disturbance agent classifica-
tion approach. Assuming that land disturbance events are spatially 
connected within a relatively short time (for example, one year), we 
segmented each disturbance object patch through eight-connected 
directions based on the COLD-detected annual per-pixel land distur-
bance maps. Objects with fewer than four pixels (about 0.4 ha) were 
filtered out, as this is usually the smallest unit that Landsat can reliably 
map55. Subsequently, we extracted samples from the existing training 
dataset to train random forest models, incorporating a total of 165 
predictor variables from spectral, temporal and spatial domains. These 
models were then utilized to classify all pixels within each disturbance 
object patch, and a majority vote was applied to determine the dis-
turbance patch’s agent. We trained a separate random forest model 
for each Landsat ARD tile (Supplementary Fig. 3), using training data 
extracted from its surrounding 3 × 3 tiles.

Predictor variable. We gathered a total of 165 predictor variables for 
agent classification based on three categories: the COLD outputs, 
topographic information and object-based metrics of segmented 
disturbance patches (Supplementary Table 2). In terms of the first 
category, 121 predictor variables were derived from COLD, including 
parameters of pre-disturbance, during disturbance and after distur-
bance for each pixel and each event. For the disturbance event 
described by Supplementary Fig. 7, COLD created a time series model 
before disturbance (pre-disturbance model), created a time series 
model after disturbance (post-disturbance model) and generated 
during-disturbance information for each spectral band. The pre- and 
post-disturbance models indicate the land surface characteristics 
(based on model coefficients and root mean square error values 
described in equation (1)) before and after a disturbance, respectively. 
The during-disturbance information includes per-band change mag-
nitude, as well as per-band change magnitude trend and variation. Most 
of the COLD output variables have been well documented by the 
literature24, except for per-band change magnitude trend and variation. 
The per-band change magnitude trend represents the trend of the 
reflectance differences (Δρ) between the model predictions and the 
observations during the change detection process (that is, six consecu-
tive observations). A linear model based on ordinary least square 
regression is used to estimate the trend, and the change magnitude 
variation is calculated based on the corresponding root mean square 
error, which measures the regression uncertainty. We also used the 
change time to indicate when (day of year) a disturbance happened, 
and the change interval to describe how long the disturbance lasted 
(that is, period between the end of pre-disturbance model and the start 
of post-disturbance model), as this information could be helpful for 
disturbance agent attribution.

For the topographic predictor variables, we included elevation, 
slope and aspect, all of which have shown promise in classifying dis-
turbance agents56–58. We also computed the spatial metrics for each 
disturbance object because different disturbance agents usually have 
varied spatial patterns. First, we computed the disturbance object 
textures represented by the standard deviations of change time, 
change magnitude and change interval from all pixels within the same  
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ensure independence. Agreement was defined as a match in both 
disturbance status (disturbed or not) and agent category between the 
reference data and our map within the same calendar year. Stratified 
estimators of accuracy and area along with their accompanying stand-
ard errors were produced using an indicator variable formulation63. 
We acknowledge that, while increasing the validation sample size can 
reduce uncertainty in the accuracy assessment and unbiased area 
estimation, our current sample size is sufficient to capture the domi-
nant patterns at the national scale, in accordance with the statistical 
‘good practice’ recommendation62. The rare disturbance classes (for 
example, wind/geohazard), which tend to have higher uncertainty, 
represent only a small fraction of the total area—particularly within 
subregions (Extended Data Table 3)—and do not affect our overall 
scientific conclusions.

Disturbance regime metrics
We analysed disturbance regimes across the USA by quantifying their 
characteristics at a landscape scale, using a grid of 3,391 hexagonal 
grids (2,500 km2 or 0.25 Mha) to ensure consistent spatial analysis. 
Each disturbance patch was generated through eight-connected 
directions based on each annual disturbance agent map (35-yr dis-
turbance agent maps total). We then calculated three key regime 
metrics for each disturbance agent within each grid, following the 
methodology of ref. 14, in which we calculated disturbance frequency 
(units of patches per square kilometre per year), disturbance size 
(units of hectare) and disturbance severity (unitless). Disturbance 
frequency reflects the rate of disturbance occurrence within a land-
scape, measured as the number of individual disturbance patches 
per square kilometre per year. Disturbance size quantifies the area 
of each individual patch, which is calculated by the number of dis-
turbed pixels multiplied by pixel size (0.09 ha). Disturbance severity 
measures the impact of each individual disturbance patch based on 
its disturbance magnitude in Landsat spectral bands derived from 
our detection algorithm24. We normalized severity using quartile per-
centiles of the mean disturbance magnitude (average of all pixel-level 
disturbance magnitudes within the same patch) for each disturbance 
agent spanning 35 yr and USA-wide to enable comparisons across 
different disturbance agents. This resulted in a continuous severity 
scale ranging from 1 (low) to 4 (very high), reflecting the severity of 
the disturbance (Extended Data Table 4). Finally, to visualize and 
analyse the regime indicators, we aggregate the frequency, size and 
severity of disturbance patches at the landscape level (hexagonal 
grid) using the arithmetic mean for patches intersecting each grid 
from 1988 to 2022.

Quantifying disturbance regime shifts
We quantified the temporal trends in both total disturbance foot-
print (nationally) and individual disturbance regime metrics (at 
the landscape scale) in the past 35 yr. We used the non-parametric 
Theil–Sen regression, which is robust to outliers, to estimate linear 
trends, with significance assessed (P < 0.05) via the two-tailed Mann–
Kendall test64. Recognizing that disturbance regimes often exhibit 
nonlinear dynamics, we performed a second-level trend analysis 
using a 10-yr rolling window. For each window (from 1997 to 2022), 
we estimated the trend in each regime metric (frequency, size or 
severity). We then applied Theil–Sen regression to these slopes to 
identify whether the trends themselves were accelerating or decel-
erating over time, and with significance assessed (P < 0.05) via the 
Man–Kendall test. An accelerating trend was defined as a positive 
trend becoming more positive (or a negative trend becoming more 
negative), while a decelerating trend indicated a positive trend becom-
ing less positive (or a negative trend becoming less negative). This 
two-level approach allowed us not only to capture temporal shifts in 
disturbance regimes but also to identify periods of accelerating or  
decelerating changes.

Data availability
The open-source data include regions of the Fifth National Climate 
Assessment at https://toolkit.climate.gov/NCA5, USGS Landsat 
Collection 2 US ARD at https://earthexplorer.usgs.gov, 2012 State 
Boundaries of United States and Territories at https://purl.stanford.
edu/vt021tk4894, Public Events Geodatabase 1999–2022 (Model 
Ready Events) of LANDFIRE at https://landfire.gov, LCT by https://
www.usgs.gov/centers/western-geographic-science-center/science/
land-cover-trends, Fire Occurrence Dataset 1984–2022 of MTBS at 
https://www.mtbs.gov, NLCD 2001–2021 at https://www.usgs.gov/
centers/eros/science/national-land-cover-database, Yearly Seasonality 
of GSW version 1.4 at https://global-surface-water.appspot.com, IDS 
at https://www.fs.usda.gov/science-technology/data-tools-products/
fhp-mapping-reporting/detection-surveys, Severe Weather Data-
base at https://www.spc.noaa.gov, International Best Track Archive 
for Climate Stewardship at https://www.ncei.noaa.gov/products/
international-best-track-archive, Global Landslide Catalog at https://
gpm.nasa.gov/landslides/projects.html#GLC and Shuttle Radar Topog-
raphy Mission (GL1) 30m DEM version 3 at https://lpdaac.usgs.gov/
products/srtmgl1v003. The 1988–2022 disturbance dataset generated 
by this study is available via GitHub at https://github.com/gersl/usdist.

Code availability
The disturbance dataset and analyses were produced with custom  
code using MATLAB 2022b and Python 3.10 (available via GitHub at 
https://github.com/gersl/usdist).
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Extended Data Table 1 | Definition of the land disturbance causal agent classes

Classifications Description

Human-directed

Logging Human-induced removal of trees from a forested area.

Construction Lands (either in a vegetated or non-vegetated state) cleared for development (for example, 
buildings, mining, solar panels, and golf course) or previously built-up land (also including 
concrete parking lot) is intensified with new structures.

Agricultural disturbance Lands, where agriculture activities are the major cause of the disturbance, such as agriculture 
expansion, intensification, and abandonment, as well as changes in management practices  
(for example, changing irrigation methods, shifting to different crops, with/without cover crops, 
rotation change, and tillage practice changes).

Wild

Stress Vegetated lands, where the condition of vegetations (that is, grass, shrub, and tree) is changed to a 
less favorable status by natural factors, such as exotic pests or pathogen outbreaks, and drought.

Wind/ geohazard Lands scattered with natural or artificial materials were physically damaged by wind (for example, 
hurricanes, tornadoes, storms) and geohazard (for example, landslides, earthquakes, volcanic 
eruptions, and tsunamis).

Fire Burned areas due to wildfires or prescribed fires on all land surfaces, such as forests, shrublands,  
or grasslands.

Water disturbance A rising and overflowing of water onto normally dry land (for example, flooding), or the decrease of 
water resulting in the conversion of formerly waterlogged areas into dry land. It can occur during 
heavy rains, when ocean waves come on shore, when snow melts quickly, when dams or levees 
break, or when water diversion structures were changed.

Other

Natural vegetation succession The land cover types are altered by the process of the structure of a biological community 
changing over time (for example, transitioned from grass to shrub, and all the way to forest) with 
enough time and adequate recovery speed.

Climate variability The short-term variations in climate patterns (for example, months, seasons, or years).

Variation in water quality Variations in the chemical composition, physical characteristics, biological parameters, pH levels, 
temperature fluctuations, and source contamination of water.

False-positive change False-positive change signals induced by clouds, shadows, and change detection algorithms.

Isolated disturbance Any disturbance less than minimum mapping unit, that is, four Landsat pixels.

Stable The absence of changes in land cover types and a lack of variations in spectral bands of satellite 
remote sensing data over time.

The first disturbance over time was identified if multiple disturbances occurred within one year, and only the disturbance that has caused lasting (>6 months) ecological impacts will be 
mapped. This study primarily focuses on mapping and analyzing the seven land disturbance causal agent classes listed in the table, with the exception of the “other” category.
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Extended Data Table 2 | Confusion matrices and accuracy estimates for land disturbance agent map (1988-2022)

Logging Construction Agricultural 
disturbance

Stress Wind/
geohazard

Fire Water 
disturbance

Other

Confusion matrix of sample counts (Unit: pixel)

Logging 78 0 0 2 2 0 0 18

Construction 1 85 5 0 0 0 2 7

Agricultural disturbance 1 2 67 3 0 0 4 23

Stress 1 0 2 95 0 0 0 2

Wind/geohazard 22 3 4 0 56 2 4 9

Fire 0 0 0 3 0 85 3 9

Water disturbance 0 0 2 1 0 0 90 7

Other 0 0 0 0 0 0 0 207

Confusion matrix of area proportions (Unit: %)

Logging 0.2108 0.0000 0.0000 0.0054 0.0054 0.0000 0.0000 0.0486

Construction 0.0005 0.0456 0.0027 0.0000 0.0000 0.0000 0.0011 0.0038

Agricultural disturbance 0.0023 0.0045 0.1519 0.0068 0.0000 0.0000 0.0091 0.0521

Stress 0.0008 0.0000 0.0016 0.0746 0.0000 0.0000 0.0000 0.0016

Wind/geohazard 0.0016 0.0002 0.0003 0.0000 0.0042 0.0001 0.0003 0.0007

Fire 0.0000 0.0000 0.0000 0.0020 0.0000 0.0564 0.0020 0.0060

Water disturbance 0.0000 0.0000 0.0014 0.0007 0.0000 0.0000 0.0629 0.0049

Other 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 99.2272

Accuracy estimates

User’s accuracy (%) 78.00±8.16 85.00±7.03 67.00±9.26 95.00±4.29 56.00±9.78 85.00±7.03 90.00±5.91 100.00±0.00

Producer’s accuracy (%) 97.58±2.21 90.56±11.27 96.23±2.33 83.36±10.24 43.44±34.35 99.74±0.36 83.51±10.18 99.88±0.03

The overall accuracy is 99.83±0.03. The columns represent the reference classification, and the rows represent the map classification (strata). The uncertainty ± indicates the margin of error 
of a 95% confidence interval. The validation sample size was determined for the purpose of evaluating US-wide maps, following the mathematical guidelines outlined in the “good practice” 
recommendation62.
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Extended Data Table 3 | Total disturbance area 1988-2022 at national and Fifth National Climate Assessment regions

Region Sample 
size

Total disturbance area 1988-2022 of different types (Mha)

Land 
disturbance

Human-directed Wild Water 
disturbance

Logging Construction Agricultural 
disturbance

Stress Wind/ 
geohazard

Fire

US 907 178.50±7.74 58.85±6.15 13.73±1.99 43.00±5.81 24.38±3.13 2.60±2.04 15.40±1.27 20.54±2.74

Northeast 29 3.56±3.35 2.36±2.94 0.90±0.72 ne ne ne ne 0.30±0.44

Midwest 64 7.23±4.01 1.55±1.79 1.62±0.92 2.44±2.39 0.58±1.16 ne ne 1.04±0.95

Southeast 266 62.49±21.32 43.73±15.38 5.45±2.36 3.49±4.14 ne 1.84±1.60 0.75±0.66 7.23±4.03

Northern 
great plains

110 17.21±6.86 1.41±2.78 0.14±0.28 6.16±3.75 4.00±2.32 ne 1.99±1.35 3.52±1.67

Southern 
great plains

152 36.75±14.53 5.65±4.30 3.72±2.44 13.04±6.79 10.38±4.64 0.03±0.05 0.84±0.98 3.11±1.79

Northwest 72 13.27±7.09 4.33±3.61 ne 4.38±2.93 ne 0.62±1.24 3.10±1.92 0.85±0.82

Southwest 214 37.31±11.91 0.68±1.34 1.65±0.96 12.27±5.95 8.79±3.23 0.00±0.00 8.60±2.86 5.30±2.93

The areas were estimated according to the validation sample in Extended Data Table 2 and the indicator variable formulation of the estimators 63. The uncertainty ± indicates the margin of error 
of a 95% confidence interval. ne means “not estimated” area due to insufficient sample size (N ≤ 1) in the subregions, reflecting a rare proportion of less than 1%.
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Extended Data Table 4 | Distribution of the frequency, size and severity of land disturbances across the US (1988-2022)

Regime indicator Disturbance Mean Quantiles (%)

1 25 50 75 99

Landscape frequency  
(patches per km2 per year)

Land disturbance 0.36 0.00 0.11 0.24 0.49 1.63

Logging 0.09 0.00 0.00 0.01 0.09 0.71

Construction 0.05 0.00 0.00 0.01 0.05 0.59

Agricultural disturbance 0.13 0.00 0.01 0.05 0.15 1.07

Stress 0.01 0.00 0.00 0.00 0.00 0.12

Wind/geohazard 0.004 0.00 0.00 0.00 0.00 0.08

Fire 0.01 0.00 0.00 0.00 0.00 0.09

Water disturbance 0.07 0.00 0.01 0.02 0.05 1.08

Patch size (ha)

Land disturbance 2.51 0.18 0.45 0.63 1.26 25.56

Logging 3.06 0.36 0.45 0.72 1.80 41.58

Construction 1.24 0.36 0.36 0.54 1.08 11.07

Agricultural disturbance 1.64 0.36 0.45 0.63 1.17 18.09

Stress 16.82 0.36 0.36 0.54 0.90 15.75

Wind/geohazard 2.42 0.36 0.45 0.63 1.08 22.86

Fire 10.72 0.36 0.45 0.81 2.07 110.52

Water disturbance 1.47 0.09 0.36 0.54 0.99 13.68

Patch magnitude (unitless; 0-1)

Land disturbance 0.16 0.05 0.11 0.15 0.20 0.38

Logging 0.12 0.05 0.09 0.11 0.14 0.25

Construction 0.17 0.07 0.12 0.16 0.20 0.40

Agricultural disturbance 0.19 0.08 0.14 0.18 0.23 0.37

Stress 0.09 0.04 0.06 0.08 0.11 0.21

Wind/geohazard 0.11 0.05 0.08 0.10 0.13 0.25

Fire 0.10 0.05 0.08 0.10 0.12 0.20

Water disturbance 0.19 0.06 0.13 0.17 0.23 0.50

Patch severity (unitless; 1-4)

Land disturbance 2.51 1.00 2.00 3.00 3.00 4.00

Logging 2.51 1.00 1.00 3.00 4.00 4.00

Construction 2.50 1.00 2.00 2.00 4.00 4.00

Agricultural disturbance 2.53 1.00 2.00 3.00 3.00 4.00

Stress 2.57 1.00 2.00 3.00 4.00 4.00

Wind/geohazard 2.49 1.00 2.00 3.00 3.00 4.00

Fire 2.45 1.00 2.00 2.00 3.00 4.00

Water disturbance 2.49 1.00 1.00 3.00 3.00 4.00

The landscape was represented by 2500-km2 hexagonal grid.
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Extended Data Table 5 | Distribution of landscape-level regime trends across the US (1988-2022)

Regime Disturbance Trend Changing rate of trend

Percent of  
trends

Percent of significant 
trends

Percent of significantly positive 
trends

Percent of significantly negative 
trends

Positive Negative Positive Negative Accelerated Decelerated Other Accelerated Decelerated Other

Landscape 
frequency

Land disturbance 15% 83% 4% 56% 38% 5% 58% 2% 53% 45%

Logging 30% 35% 15% 20% 31% 4% 65% 12% 18% 70%

Construction 12% 65% 5% 46% 16% 10% 75% 3% 32% 65%

Agricultural 
disturbance

4% 83% 1% 69% 43% 13% 43% 0% 75% 24%

Stress 19% 11% 11% 6% 25% 5% 70% 3% 32% 65%

Wind/geohazard 11% 3% 10% 2% 27% 4% 69% 0% 47% 53%

Fire 12% 4% 7% 1% 32% 2% 66% 4% 14% 82%

Water disturbance 34% 52% 9% 21% 20% 7% 73% 3% 41% 56%

Mean 
patch size

Land disturbance 43% 56% 15% 15% 12% 15% 73% 9% 22% 69%

Logging 36% 32% 17% 12% 22% 7% 71% 5% 27% 68%

Construction 29% 54% 8% 18% 8% 8% 84% 9% 17% 73%

Agricultural 
disturbance

24% 65% 3% 24% 27% 6% 67% 5% 25% 70%

Stress 15% 16% 6% 5% 10% 11% 79% 4% 23% 73%

Wind/geohazard 9% 5% 7% 2% 8% 22% 70% 2% 18% 80%

Fire 8% 9% 3% 2% 15% 7% 78% 2% 30% 68%

Water disturbance 27% 66% 2% 16% 17% 9% 74% 6% 21% 73%

Maximum 
patch size

Land disturbance 31% 67% 4% 19% 25% 4% 71% 4% 36% 60%

Logging 33% 34% 11% 10% 28% 2% 70% 5% 29% 66%

Construction 20% 61% 3% 26% 23% 3% 74% 3% 26% 71%

Agricultural 
disturbance

12% 77% 2% 42% 17% 6% 77% 2% 47% 51%

Stress 17% 14% 8% 6% 20% 2% 78% 3% 27% 70%

Wind/geohazard 10% 4% 7% 2% 22% 4% 74% 3% 35% 62%

Fire 10% 7% 5% 2% 28% 2% 70% 2% 18% 80%

Water disturbance 27% 62% 3% 15% 19% 6% 75% 2% 33% 65%

Mean 
patch 
severity

Land disturbance 79% 19% 56% 6% 6% 26% 68% 6% 32% 63%

Logging 50% 14% 33% 4% 3% 27% 70% 11% 20% 70%

Construction 73% 5% 60% 1% 5% 25% 71% 14% 4% 82%

Agricultural 
disturbance

62% 24% 37% 8% 8% 24% 69% 8% 26% 65%

Stress 17% 7% 9% 2% 7% 13% 80% 10% 9% 81%

Wind/geohazard 11% 2% 8% 1% 2% 29% 69% 10% 0% 90%

Fire 11% 4% 4% 1% 9% 11% 81% 5% 25% 70%

Water disturbance 74% 14% 42% 2% 6% 18% 76% 13% 10% 77%

The landscape was represented by 2500-km2 hexagonal grid.
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Extended Data Fig. 1 | Illustration of agricultural disturbance vs cropland 
expansion. This place experienced four disturbances in total, including one 
time crop expansion during the study period. The first disturbance is cropland 
expansion-1st (land conversion from grassland to cropland). The following three 

agricultural disturbances include agricultural intensification-2nd from single 
cropping to double cropping of soybeans, crop type change-3rd from soybean 
to corn, and agricultural practice change-4th from no-till to tillage. Plant icons 
adapted from Flaticon.com.
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Extended Data Fig. 2 | Land disturbance severity maps across the US  
(1988-2022). a. US-wide map highlighting each pixel’s most recent disturbances 
severity. The solid boundaries represent US Fifth National Climate Assessment 
regions, while the dashed boundaries indicate state border. b-h. Examples of 

disturbance agents from locations #1-7 of the US include logging, construction, 
agricultural disturbance, stress, wind/geohazard, fire, and water disturbance, 
respectively. The corresponding disturbance agent maps are presented in Fig. 1.
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Extended Data Fig. 3 | Distribution of land disturbance agents across the 
US (1988-2022). a. US-wide map depicting the relative proportion of each 
disturbance agent’s contribution within 2500-km2 hexagonal grids. Colored 
points represent agents, with transparency indicating their percentage relative 
to the seven mapped agents. The predominant agent (>50%) is highlighted within 

each grid cell. Solid boundaries delineate US Fifth National Climate Assessment 
regions, while dashed boundaries represent state borders. b-h. Area percentage 
for individual disturbance agents, relative to the seven mapped agents, sharing 
the same legend as (a): (b) logging, (c) construction, (d) agricultural disturbance, 
(e) stress, (f) wind/geohazard, (g) fire, and (h) water disturbance.
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Extended Data Fig. 4 | Land disturbance regimes across the US represented 
in 2500-km2 hexagonal grids (1988-2022). a. Average disturbance patch 
frequency. b. Average disturbance patch size. c. Average disturbance patch 
severity, scaled from 1 to 4, where 0-1 indicates undisturbed to low, 1-2 
indicates low to medium, 2-3 indicates medium to high, and 3-4 indicates high 
to very high. Each panel displays eight maps: (1) logging, (2) construction, 

(3) agricultural disturbance, (4) stress, (5) wind/geohazard, (6) fire, and (7) 
water disturbance. The black boundaries represent US Fifth National Climate 
Assessment regions, while the gray boundaries indicate state border. The 
consistent color scale across all maps facilitates direct comparison of regime 
characteristics across different disturbance agents. Histograms for each map 
are provided in Supplementary Fig. 6.
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Extended Data Fig. 5 | Map of trend in land disturbance regimes at 2500-km2 
hexagonal grids across the US (1988-2022). a. Trend of disturbance patch 
frequency. b. Trend of disturbance patch size. c. Trend of disturbance patch 
severity. In each panel, (1-7) are the regime trend map of logging, construction, 
agricultural disturbance, stress, wind/geohazard, fire, and water disturbance. In 
each map, trends are estimated using the Theil-Sen estimator, and their statistical 
significance is determined by the two-tailed Mann-Kendall test (p < 0.05), 
where symbols indicate significantly accelerated (+) and decelerated (−) trends, 
while dots (•) denote other significant (for example, increasing or decreasing) 

trends. Each map includes density plots in the lower-left corner, depicting 
the distribution of trend magnitudes for landscapes with significant trends, 
categorized as accelerated, decelerated, and other significant trends (from top 
to bottom). The number presents the number of hexagonal grids with significant 
trend. The solid boundaries represent US Fifth National Climate Assessment 
regions, while the dashed boundaries indicate state border. The consistent color 
scale across all maps facilitates direct comparison of disturbance regime shift 
patterns. All general land disturbance agent regime trends are provided in Fig. 4.
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